DARPA's M3 program is creating and demonstrating novel design tools, fabrication methods and control algorithms to make robots more mobile and better able to manipulate objects in their environment.

DARPA-Funded Inflatable Robotics Helps Spark Idea for Silver Screen Star

Contributed by | Otherlab

 

The giant, balloon-like inflatable robot named Baymax in Disney's Big Hero 6 has its roots in real-world research conducted by iRobot Corporation, Carnegie Mellon University and Otherlab under DARPA's Maximum Mobility Manipulation (M3) program. The film's co-director, Don Hall, has said he was inspired to cast Baymax as an air-filled, soft robot after he saw an inflatable robotic arm on a visit to Carnegie Mellon's Robotics Institute. Carnegie Mellon's work in soft robotics has been supported by DARPA and the National Science Foundation. 

 

DARPA's M3 program is creating and demonstrating novel design tools, fabrication methods and control algorithms to make robots more mobile and better able to manipulate objects in their environment. One area of M3 research is fabric-skinned robots that are filled with and manipulated by air. 

"The M3 program has made great strides in making robots move more naturally like animals or humans move," said Gill Pratt, DARPA program manager. "Inflatable robots, like the arm developed at Carnegie Mellon, offer unique benefits such as high strength to weight, small size when uninflated, low fabrication cost, and safety when working around human beings." 

The M3 program also has developed robots that draw inspiration from four-legged animals, such as the cheetah. View the electric cheetah-bot developed by DARPA performer MIT here.


Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

PQ12-R Micro Linear Servo

PQ12-R Micro Linear Servo

The PQ12-R series of linear servos are the smallest affordable linear servo on the market today. Small enough to fit inside a tic tac box, it's very powerful with a maximum force of over 11lbs. It operates as a direct plug-and-play replacement for standard rotary servos, using the same standard 3 wire connector. Regardless of how you drive your servos, be it with an RC receiver, an Arduino board, or a VEX micro-controller, the PQ12-R servo will function in place of a regular servo, but with the added benefit of providing linear motion. They're available in a 20mm stroke coupled with gear ratio options of 30:1, 63:1 and 100:1 cover a large variety of applications. Our PQ12 is popular used in a variety of robotics applications, medical devices, radio control and 3D printable bionic hands. Our PQ12 is proudly designed in Canada by our in-house team of engineers and thoroughly tested before leaving our facility.