Analog multi-positioning monitoring via teachable C-slot sensor

Serves to accurately detect the size of the gripped parts which can be output as an analog voltage value as 0-5 V DC or 0-10 V DC

11-26-2013 - The analog SCHUNK MMS-A magnetic switch is the first teachable encoder which can be integrated directly into the C-slot of gripping modules free of interfering contours. It serves to accurately detect the size of the gripped parts which can be output as an analog voltage value as 0-5 V DC or 0-10 V DC, as selected, during the current handling process. Now the extremely compact MMS-A, with a 4 mm diameter, is sufficient where previously several magnetic switches were required.


The required electronics are already fully integrated. The output signal is sent over a displacement measuring range up to 30 mm with a resolution of up to 0.1 mm. Using an intuitive teaching function and two LEDs, different magnetic fields can be quickly and easily made linear. To ensure high repeat accuracy, the magnetic analog switch is specifically tailored to the relevant modules from the comprehensive SCHUNK standard program. Together with the SCHUNK FPS-F5 force sensor system controller, the encoder becomes a simple teachable multi-range sensor which can detect up to five teachable states. The MMS-A has a rugged housing for industrial use and meets protection class IP67. It can be flexibly integrated into systems via the cable outlet (30 cm, 100 cm). The operating voltage is between 15 V and 30 V.

Featured Product

IPR Robotics - Right-Sized 7th Axis Robot Linear Rails

IPR Robotics - Right-Sized 7th Axis Robot Linear Rails

IPR Robotics offers a wide range of servo-driven 7th axis linear rails for industrial robots. These rails come in ten different sizes and are constructed from modular high strength extruded aluminum sections to handle payloads of 100 kg to 1600 kg or from steel to handle 2000 kg payloads. This variety of rail sizes allows each application to be sized correctly, controlling the space required and the price point. The drive train design of these rails utilizes helical gear-racks and is proven over 10 years to be repeatable and reliable, even in tough foundry applications.