RE2 Robotics to Develop Manipulator Arms for Unmanned Underwater Vehicles

RE2’s DMEA technology will provide EOD personnel with the ability to remotely and effectively address Waterborne Improvised Explosive Devices (WIEDs).

PITTSBURGH, PA - August 18, 2015 - RE2, Inc., a leading developer of mobile manipulation systems, announced today that the company was awarded a $2.7 Million contract by the Office of Naval Research to develop an Underwater Dexterous Manipulation System for Explosive Ordnance Disposal (EOD) Applications (DMEA). RE2's DMEA technology will provide EOD personnel with the ability to remotely and effectively address Waterborne Improvised Explosive Devices (WIEDs).


"We are honored that ONR chose RE2 to develop a strong, highly dexterous underwater manipulation system," stated Jorgen Pedersen, president and CEO of RE2. "We thrive on complex engineering challenges and are excited to leverage our mobile manipulation expertise for the underwater systems market."

WIEDs pose a significant threat to our vessels, bridges, and ports. WIEDs placed in congested areas, such as bridge pilings, are particularly difficult to access and defeat. RE2's dual-arm dexterous manipulation technology integrated onto an Unmanned Underwater Vehicle (UUV) will make it possible to perform EOD tasks in confined spaces.

Pedersen continued, "We are working with several unmanned underwater systems subject matter experts, including Bluefin Robotics, The Pennsylvania State University Applied Research Lab, SPAWAR Systems Center Pacific, and Dr. Hagen Schempf, to ensure the success of the technology and program."

Featured Product

KINGSTAR Soft Motion - Replace Your Motion Control Hardware with Precision-Performance Software in Half the Cost & Time

KINGSTAR Soft Motion - Replace Your Motion Control Hardware with Precision-Performance Software in Half the Cost & Time

KINGSTAR Soft Motion is an open and standards-based, real-time software-only solution that streamlines motion control automation. Soft Motion runs directly on the 64-bit PC, uses the NIC card for I/O, and uses the powerful EtherCAT protocol to free you from the shackles of proprietary and costly hardware. With Soft Motion, motion control engineers can design, develop and integrate real-time PC-based machine controllers in a "plug-and-play" environment for consolidated, inexpensive and scalable motion control.