RE2 Robotics Awarded $1 Million to Develop Biomechanical Exoskeleton Simulator System

The simulator will allow the Army to more accurately predict musculoskeletal stress on military personnel while wearing assistive devices, such as robotic exoskeletons.

PITTSBURGH, PA - February 12, 2016 - RE2 Robotics, a leading developer of mobile robotic manipulator arms, announced today that the company has been awarded a $1 Million Phase II Small Business Innovation Research (SBIR) program with the U.S. Army to develop the Biomechanical Exoskeleton Simulator System, a software tool to assess the impact of load carriage and body-wearable robotic devices on musculoskeletal health and performance. The simulator will allow the Army to more accurately predict musculoskeletal stress on military personnel while wearing assistive devices, such as robotic exoskeletons.


According to the American Journal of Preventive Medicine, injuries among warfighters have increased significantly over the past few decades, with a majority of musculoskeletal injuries attributed to overuse and excessive load carriage. Specifically, back and lower extremity injuries due to overburdening account for 65% of the reported musculoskeletal injuries to military personnel from boot camp to discharge.

The goal of the Phase II effort is to develop a simulation tool capable of producing validated biomechanical data on muscle forces, stresses, joint loads, and metabolic load that a human subject would have produced during load carriage with and without the use of a robotic exoskeleton. This data will help the Army analyze the benefits of exoskeletons and develop injury predictions.
"By directly modeling the interaction between a human user and the exoskeleton, our simulator will help to identify potential injury mechanisms and issues before any large-scale deployment of the device - ultimately reducing injuries while saving the Army time and money," stated Jorgen Pedersen, president and CEO for RE2.

RE2 is partnering with biomechanical exoskeleton experts at Ekso Bionics™, neuromusculoskeletal simulation leader, Dr. Scott Delp and Dr. Jennifer Hicks, faculty at Stanford University, and the Human Engineering Research Laboratories at the University of Pittsburgh to design and test the Biomechanical Exoskeleton Simulator System.

This work is supported by the US Army Medical Research and Materiel Command under Contract No. W81XWH-14-C-0002. The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

About RE2 Robotics
RE2 Robotics is developing the next generation of mobile robotic manipulator arms that enable your robot to better interact with the world - whether on the ground, in the air, or underwater. For more information, please visit www.resquared.com or call 412.681.6382.

Featured Product

KINGSTAR Soft Motion - Replace Your Motion Control Hardware with Precision-Performance Software in Half the Cost & Time

KINGSTAR Soft Motion - Replace Your Motion Control Hardware with Precision-Performance Software in Half the Cost & Time

KINGSTAR Soft Motion is an open and standards-based, real-time software-only solution that streamlines motion control automation. Soft Motion runs directly on the 64-bit PC, uses the NIC card for I/O, and uses the powerful EtherCAT protocol to free you from the shackles of proprietary and costly hardware. With Soft Motion, motion control engineers can design, develop and integrate real-time PC-based machine controllers in a "plug-and-play" environment for consolidated, inexpensive and scalable motion control.