Insect eyes enable drones to fly independently

After studying how insects navigate through dense vegetation, researchers at Lund University in Sweden have come up with a system that can be applied to flying robots. By adapting the system to drones, they can be made to adjust their speed to their surroundings and fly on their own– completely without human intervention and control.

After studying how insects navigate through dense vegetation, researchers at Lund University in Sweden have come up with a system that can be applied to flying robots. By adapting the system to drones, they can be made to adjust their speed to their surroundings and fly on their own- completely without human intervention and control.

The breakthrough was made by vision researchers Emily Baird and Marie Dacke at the Department of Biology in Lund. Among other things, their research shows how bees that fly through dense forests assess light intensity to avoid other objects and find holes in the vegetation to enable them to navigate safely.
The ability to avoid collisions is crucial to animals and insects that live in environments with many obstacles. The Lund researchers' results show that insects, such as the green orchid bee in the Panama rainforests, apply a strategy where they assess the light intensity to navigate quickly and effectively without crashing. They are guided by the intensity of the light that penetrates the holes in leaves to determine whether a particular hole is sufficiently large for them to fly through safely without hitting the edges.
"The system is so simple - it's highly likely that other animals also use light in this way. The system is ideal for adapting to small, light-weight robots, such as drones. My guess is that this will become a reality within five to ten years", says Emily Baird.
Before it is realised, the biological results from the rainforest must be transformed into mathematical models and digital systems that make it possible for robots to fly in complicated environments completely without human intervention.
"Using light to navigate in complex environments is a universal strategy that can be applied by both animals and machines to detect openings and get through them safely. Really, the coolest thing is the fact that insects have developed simple strategies to cope with difficult problems for which engineers have still to come up with a solution", says Emily Baird.
The research findings are presented in an article in the scientific journal Proceedings of the Royal Society B.
Article
Baird E, Dacke M. 2016. Finding the gap: a brightness-based strategy for guidance in cluttered environments. Proc. R. Soc. B
Further information
Emily Baird, researcher
Lund University, Department of Biology
Tel: +46 46 222 96 18; +46 72 700 55 55
Email: emily.baird@biol.lu.se

Lund University was founded in 1666 and is regularly ranked as one of the world's top 100 higher education institutions. The University has 41 000 students and 7 500 staff based in Lund, Helsingborg and Malmö. We are united in our efforts to understand, explain and improve our world and the human condition.

Featured Product

Motion Controls Robotics, Inc. - The Random Robotic Case Erector System

Motion Controls Robotics, Inc. - The Random Robotic Case Erector System

Random Case Erectors are ideal for fulfillment centers and other end-of-line packaging needs. Save money by eliminating changeover downtime. Reduce ergonomic injuries by eliminating repetitive manual tasks. The Random Robotic Case Erector System includes: • FANUC M20iA/20 Robot • Combi gravity case magazine - holds 2 box sizes • Combi bottom flap folder with integrated 3M case sealing head. • Fixed robot base, anchored to the floor • Flexible end of arm tool to pick and erect multiple case sizes to eliminate changeover downtime • System wiring and controls • Color 7.5" touchscreen HMI display for selecting case size • Perimeter guarding with safety interlocks on doors • Programming for Robot, PLC/PMC, HMI and Vision • Complete documentation in electronic format • On-site training and support • Compliance with all applicable robotic safety standards. Alternate safety configuration may be available to allow an operator to changeover a case size in one magazine while the robot continues to work in other magazines. Contact Motion Controls Robotics to learn more about how to implement this system into your current end-of-line operations.