CU-Boulder Team’s Octopus-Inspired ‘Soft’ Robot Wins International Challenge

Lightweight, mobile pneumatic hand excels at grasping "mystery objects"

An octopus tentacle can perform tasks as complex as opening a jar and can continue to function after being severed from its body, thanks to a concentration of neurons in the tentacle itself. A team of researchers at the University of Colorado Boulder has created a robotic hand that is nearly as dexterous and self-contained, winning them the RoboSoft Grand Challenge manipulation competition in Livorno, Italy, on April 29-30.

The "soft" robotic hand created in the Department of Computer Science's Correll Lab uses a standard USB connection to provide control signals and power. A mini-pump supplies air pressure to inflatable fingers, while embedded sensors enable the fingers to make adjustments on the fly. In addition, embedded computation is used to detect whether a grasp is successful, an important capability for future robotic autonomy.
"This demonstration is just the tip of the iceberg," said Assistant Professor Nikolaus Correll, who created the robot along with PhD students Nicholas Farrow and Yang Li. "It lets us better understand the role of soft and stiff materials during a complex manipulation task." He added that the lab is continuing its research into materials that can quickly change between stiff and soft - something his students recently used to make a skateboard that can be rolled up and stored in a backpack.
The RoboSoft competition - announced in Nature in February - challenged teams in the field of soft robotics to create robots that could reach around obstacles and manipulate "mystery objects" with weights up to 1 kg over a distance of 60 cm, with the robot itself being limited to a weight of 20 kg. The CU-Boulder team's modular pneumatic hand, combined with one of the most lightweight and stiffest commercially available arms (Kinova Jaco), weighed less than 7 kg and could reach up to 95 cm, with a payload capacity of 1 kg. The hand enabled delicate manipulation of a wide variety of hard, soft and fragile objects.
Correll explained that their design not only makes grasping irregular objects easier, it also enables grasping when object recognition is limited, since grasp planning does not need to be perfect as with conventional stiff robotic grippers.
"Soft grippers with embedded feedback control bear the possibility of creating a new class of robotic systems that are lightweight, soft, and mobile while being highly deformable," he said.
Farrow, Li and Correll have described their hand design in a paper on Their research has been supported by the National Science Foundation's National Robot initiative via a collaborative grant to CU-Boulder, the Massachusetts Institute of Technology and Harvard University.

Featured Product

BitFlow Introduces 6th Generation Camera Link Frame Grabber: The Axion

BitFlow Introduces 6th Generation Camera Link Frame Grabber: The Axion

BitFlow has offered a Camera Link frame grabbers for almost 15 years. This latest offering, our 6th generation combines the power of CoaXPress with the requirements of Camera Link 2.0. Enabling a single or two camera system to operate at up to 850 MB/S per camera, the Axion-CL family is the best choice for CL frame grabber. Like the Cyton-CXP frame grabber, the Axion-CL leverages features such as the new StreamSync system, a highly optimized DMA engine, and expanded I/O capabilities that provide unprecedented flexibility in routing. There are two options available; Axion 1xE & Axion 2xE. The Axion 1xE is compatible with one base, medium, full or 80-bit camera offering PoCL, Power over Camera Link, on both connectors. The Axion 2xE is compatible with two base, medium, full or 80-bit cameras offering PoCL on both connectors for both cameras. The Axion-CL is a culmination of the continuous improvements and updates BitFlow has made to Camera Link frame grabbers.