Self-Reconfiguring Modular Robotics Podcast

Per Sjöborg has a series of audio interviews with leading researchers and thinkers in the field self-reconfiguring modular robotics.

On his website Flexibility Envelope he describes the field of self-reconfiguring modular robotics as the joining two elements:

The first part is Modular robotics. This is a branch of robotics that aims to build complex systems with simple components. A bit like Lego,simple pieces are,by cooperating,capable of building complex objects.

The Second part is Self-reorganization to make the units able to move among each other on their own accord and thus reconfigure themselves from one task to another without human intervention. This also allows the system created to be active and dynamic.

His audio interviews can be found on here and are a great listen.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Universal Robots - Collaborative Robot Solutions

Universal Robots - Collaborative Robot Solutions

Universal Robots is a result of many years of intensive research in robotics. The product portfolio includes the UR5 and UR10 models that handle payloads of up to 11.3 lbs. and 22.6 lbs. respectively. The six-axis robot arms weigh as little as 40 lbs. with reach capabilities of up to 51 inches. Repeatability of +/- .004" allows quick precision handling of even microscopically small parts. After initial risk assessment, the collaborative Universal Robots can operate alongside human operators without cumbersome and expensive safety guarding. This makes it simple and easy to move the light-weight robot around the production, addressing the needs of agile manufacturing even within small- and medium sized companies regarding automation as costly and complex. If the robots come into contact with an employee, the built-in force control limits the forces at contact, adhering to the current safety requirements on force and torque limitations. Intuitively programmed by non-technical users, the robot arms go from box to operation in less than an hour, and typically pay for themselves within 195 days. Since the first UR robot entered the market in 2009, the company has seen substantial growth with the robotic arms now being sold in more than 50 countries worldwide.