Robotic Highway Safety Markers

The Robotic Highway Safety Markers system was developed by Shane Farritor a Professor at University of Nebraska-Lincoln. The Robotic Safety Barrel (RSB) replaces the heavy base of a typical safety barrel with a mobile robot. The mobile robot can transport the safety barrel and robots can work in teams to provide traffic control. Independent, autonomous barrel motion has several advantages.

First, the barrels can self-deploy, eliminating the dangerous task of manually placing barrels in busy traffic. To save costs, the robots work in teams. A more expensive "shepherd" robot with built-in Global Positioning System (GPS) navigation would position itself precisely, and then guide the placement of less expensive units, which measure out their positions based on wheel movement (a "dead reckoning" system). In tests, the robots were able to deploy themselves just about as well as humans could place them - their big wheels let them turn on a dime.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Festo - Complete Mechatronics Motion Solutions

Festo - Complete Mechatronics Motion Solutions

Mechatronic Motion Solutions from Festo is a unique system of components, modules, and software. It integrates all types of pneumatic, servopneumatic and (electro)mechanical automation motion and combines them according to your task. Irrespective of the control system environment you use, Mechatronic Motion Solutions always provides the appropriate interfaces. The fingers can be actively moved and their strength amplified; the operator's hand movements are registered and transmitted to the robotic hand in real time. The objectives are to enhance the strength and endurance of the human hand, to extend humans' scope of action and to secure them an independent lifestyle even at an advanced age.