Robot Learning Manipulation Action Plans by “Watching” Unconstrained Videos from the World Wide Web

From Yezhou Yang, Yi Li, Cornelia Fermuller and Yiannis Aloimonos:

In order to advance action generation and creation in robots beyond simple learned schemas we need computational tools that allow us to automatically interpret and represent human actions. This paper presents a system that learns manipulation action plans by processing unconstrained videos from the World Wide Web. Its goal is to robustly generate the sequence of atomic actions of seen longer actions in video in order to acquire knowledge for robots. The lower level of the system consists of two convolutional neural network (CNN) based recognition modules, one for classifying the hand grasp type and the other for object recognition. The higher level is a probabilistic manipulation action grammar based parsing module that aims at generating visual sentences for robot manipulation.


The list of the grasping types.

Experiments conducted on a publicly available unconstrained video dataset show that the system is able to learn manipulation actions by “watching” unconstrained videos with high accuracy.... (article at Kurzweilai.net) (original paper)

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Motion Controls Robotics, Inc. - The Random Robotic Case Erector System

Motion Controls Robotics, Inc. - The Random Robotic Case Erector System

Random Case Erectors are ideal for fulfillment centers and other end-of-line packaging needs. Save money by eliminating changeover downtime. Reduce ergonomic injuries by eliminating repetitive manual tasks. The Random Robotic Case Erector System includes: • FANUC M20iA/20 Robot • Combi gravity case magazine - holds 2 box sizes • Combi bottom flap folder with integrated 3M case sealing head. • Fixed robot base, anchored to the floor • Flexible end of arm tool to pick and erect multiple case sizes to eliminate changeover downtime • System wiring and controls • Color 7.5" touchscreen HMI display for selecting case size • Perimeter guarding with safety interlocks on doors • Programming for Robot, PLC/PMC, HMI and Vision • Complete documentation in electronic format • On-site training and support • Compliance with all applicable robotic safety standards. Alternate safety configuration may be available to allow an operator to changeover a case size in one magazine while the robot continues to work in other magazines. Contact Motion Controls Robotics to learn more about how to implement this system into your current end-of-line operations.