Leeds could become the first ‘self-repairing city’ with a fleet of robotic civil servants

By Chloe Olewitz for Digital Trends:  Most people don’t know a whole lot about the city of Leeds other than its distinct regional accent, but believe it or not, local Leeds University is actually known for being a pioneering research leader in the field of robotics. The university’s School of Civil Engineering has put together a key research team that is currently developing a fleet of civil service robots and drones that would effectively turn Leeds into a self-repairing city.

The robotics research project is funded with £4.2M ($6.5M) of national funds, focusing on autonomous machines that would fix infrastructure issues across the city of Leeds, and perhaps, eventually, beyond. Leeds’ robot fleet will focus on robotic fixes for citywide issues like burst or damaged utility pipes, broken or nonfunctional street lights, and road fractures that disturb drivers on their way to anywhere.

Three main branches of the project cover the functions of the Leeds robots: Perch and Repair; Perceive and Patch; and Fire and Forget. The Perch and Repair segment covers research into robotic drones that can land, or “perch” like birds atop tall structures like street lamps or building-mounted civil structures. The Perceive and Patch team leads research into drones that can survey popular roads or even particularly dangerous ones in order to identify and repair potholes where they exist, and in the future, even prevent them before they occur.  Cont'd...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Stäubli – TP80 Fast Picker robot

Stäubli - TP80 Fast Picker robot

Introducing the TP80 Fast Picker, a new series that delivers speeds in excess of 200 picks per minute, and more flexibility at a lower cost. Stäubli has long set the standard for high speed and precision in robotic performance, ensuring the highest possible throughput and shortest cycle times.