25 teams prepare for 2015 DARPA Robotics Challenge Finals

By David Szondy for Gizmag:  On June 5 and 6, the 2015 DARPA Robotic Challenge (DRC) Finals will take place at Fairplex in Pomona, California. Open to the public, it will see 25 international teams compete for US$3.5 million in prizes as part of an effort to develop robots for disaster relief. Here's what to expect.

This year's challenge will see 25 teams competing. Half of the teams are from the United States, five are from Japan, three from Korea, two from Germany, one from Italy, one from Hong Kong, and one from the People’s Republic of China. They will be vying for a US$3.5 million total of prizes; including a $2 million first prize, a $1 million second prize, and a $500,000 third prize. The robots will be of a wide variety with some humanoid, some four-legged, and some tracked, but all will need to operate free of external power, mechanical support, and limited communications with their controllers.

The basic idea behind DRC 2015 is to make things much harder for the robots than previously.

Stephen Hawking fears robots could take over in 100 years

By Sharon Gaudin for ComputerWorld:  Worried that one day we'll have robot overlords? You're in good company.
Reknowned physicist, cosmologist and author of A Brief History of Time, Stephen Hawking said this week that robots, powered by artificial intelligence (A.I.), could overtake humans in the next 100 years.
Speaking at the Zeitgeist conference in London, Hawking said: "Computers will overtake humans with AI at some within the next 100 years. When that happens, we need to make sure the computers have goals aligned with ours," according to a report in Geek.
This isn't the first time Hawking has spoken about the threat that comes along with machine learning, A.I. and robotics.
In December, Hawking said, "the development of full artificial intelligence could spell the end of the human race."

The 7 Best Cities For Robotics Right Now

RoboUniverse, robotics’ annual meeting of the minds, is rolling out in New York City this week—and in the keynote address today, we learned where the best robotics work in the world is happening.

In it, he shared a list of world cities that are pretty much killing it in the robotics sphere. The innovation centers are, in no particular order:
1.  Boston
2.  Pittsburgh
3.  San Jose/San Francisco (Silicon Valley)
4.  Tokyo
5.  Osaka
6.  Seoul
7.  Munich
What determined this list? Kara said that robot innovation centers all share proximity to “excellent universities,” and regularly contribute to robotics R&D. It’s also hard to deny each location’s contributions to robotics so far: Silicon Valley and Tokyo are gimmes, but not everyone might be aware of the others.

'First heavy-duty collaborative robot' can lift 35kg

Fanuc claims that it is the first robot manufacturer to produce a heavy-duty robot designed to work safely alongside humans. Its CR-35iA robot can perform tasks involving payloads of up to 35kg without needing the protective guards and fences that have previously been needed for robots with similar lifting capacities.
Although there are already several other collaborative robots on the market, most are designed for much lower payloads.
The new robot will stop automatically if it touches a human operator. A soft covering material also reduces the force of any impacts and prevents human operators from being pinched by the mechanism. And if the robot comes too close to an operator, they can simply push it away. The covering has a green colour to distinguish it from Fanuc’s usual yellow robots.
The six-axis robot is designed for duties such as transferring heavy workpieces or assembling parts. By avoiding the need for safety barriers, it is claimed to improve production efficiencies and allow higher levels of automation.

Kickstarted at $3M, How Tiko is Set to Be the Best and Cheapest 3D Printer

Sage Lazzaro for The Observer:  When we last talked with the folks from Makerbot, we discussed how 3D printers will soon be household appliances as common as microwaves, vacuums and well, regular printers. But they agreed that certain design and affordability standards need to be met first. Little did we know, a 3D printer set to meet those standards was being developed in Toronto as we spoke.
We’re talking about Tiko, the meticulously designed and shockingly affordable “unibody” 3D printer that’s had the industry’s experts and publications buzzing. The $179 3D printer surpassed its Kickstarter goal of $100,000 in three hours and finished up its campaign last Friday with a total of just under $3 million in pledges.
Tiko looks nothing like any 3D printer you’ve seen before. While most have a multipart frame, Tiko’s frame is one piece with three sets of arms that move in unison, essentially eliminating issues of misalignment or inaccurate prints associated with other products. The New York Observer spoke with Tiko founder and CEO Matt Gajkowski, who explained that Tiko’s unique design is actually essential to its affordability.  Cont'd...

Robotics Emerge to Power Next-Generation Industrial Environments

Dan Dibbern and Laura Studwell for Quality Magazine:  Industrial robots are expected to be the focus for investment in factory automation. According to the International Federation of Robotics (IFR), investment in industrial robots is expected to grow at an annual rate of 12% from 2015 to 2017. The packaging industry is experiencing a surge in robotic integration throughout primary, secondary and tertiary packaging—from processing, assembly, labeling and cartoning to case packing and palletizing.

The driving force behind the surge in robotics sales growth in North America is the Food Safety Modernization Act (FSMA). The FSMA is requiring companies to introduce automated machinery and components into the production process to help eliminate potential product quality and integrity issues.

With the FSMA about to publicly release its requirements, the use of robots in packaging is at the point of takeoff. And with recent technical advances in robotics helping to power the new wave of interest, companies are experiencing first-hand that robots are faster, smarter and more affordable than ever before.

CyPhy LVL 1 Drone

From CyPhy LVL 1 Drone Kickstarter:

Our drone never tilts, allowing it to snap perfect pictures and stable video every time. By eliminating tilting, the drone handles intuitively, with an unrivaled out-of-the-box experience.

Thanks to its special shape, our LVL 1 simplifies aerial photography. There’s no complex, expensive stabilization mount or vulnerable camera. You’ll take stunning pictures with ease.

CyPhy Works, founded by iRobot co-founder Helen Greiner, has been making tethered drones for industrial application. These drones were designed to fly 24/7 in all types of wind and weather.

While Dr. Kenneth Sebesta was optimizing our drones’ hovering, he came up with a breakthrough. He realized that with just the right twist angle of the arms and a precise amount of added dihedral — plus a lot more fancy math — we could achieve level flight for the first time on a multi-rotor drone... $495 (Kickstarter)

Building Enthusiasm for Construction Robotics

Vicki Speed for Inside Unmanned Systems:  It would seem that robotic systems could provide an extra measure of safety, as well as a higher level of efficiency and machine-consistent quality. Yet, to date, the use of robotic systems on construction jobsites has been minimal.  The building industry, however, is looking with fresh eyes at robots—including at least three new systems expected to be available this year—with a focus on near-term efficiencies that make investment in the systems make sense.
Demolition Days
Among the first fully-realized applications of robots in the construction environment are those used to support work that comes at the end of a structure’s life, namely demolition. In fact, remotely operated demolition robots have been around for more than a decade.
Robotic Building Blocks
The short answer is, ‘Yes.’ There are robotic systems in development around the world that can lay bricks, set tile or finish concrete floors.
Bionic Builders?
While not autonomous systems, robotic exoskeletons, those high-tech wearable suits seen in futuristic movies that help mere mortals defend Earth against other beings, could be a very real part of tomorrow’s jobsite and a possible precursor to autonomous robots in the field.

Microsoft HoloLens gets real with robotics, surgery, architecture

Jared Newman for PCWorld:  At the 2015 Build conference, Microsoft tried to prove that HoloLens is more than just a neat gimmick.
The company showed off several new demos for its “mixed reality” headset, which can map digital imagery onto the user’s physical surroundings. While previous demos had focused on fun ideas like a virtual Mars walk and a living room-sized version of Minecraft, the Build presentation emphasized real-world applications for businesses and education.
For instance, Microsoft showed how architects could use HoloLens to interact with 3D models, laid out virtually in front of them on a table. They might also be able to examine aspects of a building site at full scale, with virtual beams and walls rendered before their eyes.
Not all the presentations were so serious. Microsoft also showed off an actual robot whose controls appeared in the virtual space above the robot’s head. Users could then create a movement pattern for the robot by tapping on the ground. Another demo showed how users could create their own personal screens that followed them around in real space.

Fetch Robotics' Fetch & Freight

From Fetch Robotics (the core team from Unbounded Robotics/all former employees of Willow Garage):

The Fetch Robotics’ system is comprised of a mobile base (called Freight) and an advanced mobile manipulator (called Fetch). Fetch and Freight can also use a charging dock for autonomous continuous operations; allowing the robots to charge when needed and then continue on with their tasks. In addition, the system includes accompanying software to support the robots and integrate with the warehouse environment. Both robots are built upon the open source robot operating system, ROS.

Fetch is an advanced mobile manipulator, including features such as:

  • Telescoping spine with variable height from 1.09 to 1.491 meters
  • Capacity to lift approximately 6 kgs.
  • 3D RGB Depth Sensor
  • Back-Drivable 7DOF Arm
  • Modular Gripper Interface
  • Head Expansion Mount Points
  • Pan-Tilt Head
  • Differential Drive
  • ROS-Enabled

Freight is a modular base, used separately or in conjunction with Fetch. Features include:

  • Base Expansion Mount Points
  • Payload support of approximately 68 kgs.
  • 2D Laser Scanner
  • Stereo Speaker
  • Computer Access Panel
  • Run-Stop
  • ROS-Enabled

(full press release)

Planting Trees With Drones

From The Independent:

A drone start-up is going to counter industrial scale deforestation using industrial scale reforestation.

BioCarbon Engineering wants to use drones for good, using the technology to seed up to one billion trees a year, all without having to set foot on the ground... (cont'd) (projects website)


NHL Goal Celebration Hack With A Hue Light Show And Real Time Machine Learning

From François Maillet:

In Montréal this time of year, the city literally stops and everyone starts talking, thinking and dreaming about a single thing: the Stanley Cup Playoffs. Even most of those who don’t normally care the least bit about hockey transform into die hard fans of theMontréal Canadiens, or the Habs like we also call them.

Below is a Youtube clip of the epic goal celebration hack in action. In a single sentence, I trained a machine learning model to detect in real-time that a goal was just scored by the Habs based on the live audio feed of a game and to trigger a light show using Philips hues in my living room... (full article)

AGROBOT: Strawberry Harvesters


AGB® manages a set of robotic manipulators able to locate and identify your strawberries, selecting them based on their size and degree of ripeness.

This system analyzes your fruit one by one, and it is responsible for ordering cutting movements that guarantee accuracy, smoothness, and sensitivity in the strawberry treatment. The fruit, picked with the strictest hygiene conditions, is driven by our FlexConveyor System to the packaging area. Select the ripeness you would pick up.

AGvision ® is an artificial vision system that identifies your fruit with maximum accuracy and consistency. Its advanced technology, implement in real time a protocol for morphological and color analysis which systematically return the ripeness of the fruit, discriminating exclusively those strawberries which meets the quality standards previously set by the farmer... (more details)

Rethinks New Robot: Sawyer

From Rethink:

Introducing Sawyer – the revolutionary new high performance collaborative robot designed to execute machine tending, circuit board testing and other precise tasks that are impractical to automate with industrial robots. 

Smaller Footprint, Longer Reach

Smaller and lighter weight than Baxter, and with 7 DOF and a 1026 mm reach, Sawyer can maneuver into the tight spaces and varied alignments of work cells designed for humans.

International Availability

With a base price of $29,000, Sawyer will initially be available in North America, Europe, China and Japan, with limited availability beginning in mid-2015.

Intera 3

Like Baxter, Sawyer is powered by the industry’s best and most intuitive software platform, Intera.  It features the same iconic “face” screen (with a refreshed and even more expressive design) that helps it communicate with co-workers, along with the train-by-demonstration user interface that revolutionized how robots can be deployed on factory floors.  Sawyer runs on the same version of Intera as Baxter, and will continue to evolve and improve with regular upgrades... (more details) (more about Intera software) 

Star Wars' BB-8

From the new Star Wars:

Records 226 to 240 of 613

First | Previous | Next | Last

Featured Product

Comau’s Racer3 Robot: Beauty and Passion Meet Precision and Speed

Comau's Racer3 Robot: Beauty and Passion Meet Precision and Speed

Racer3 is a powerful, high-speed, 6-axis articulated robot featuring a payload of 3kg and a reach of just 630 mm. Built from high-strength aluminum, the newest innovation in Comau robotics is lightweight and can be easily mounted on benches, walls, ceilings or on inclined supports. The third robot within the award-winning Racer family, Racer3 is Comau's response to the growing demand for fast, cost-effective robotic automation within small to medium-sized enterprises and emerging countries. Racer3 is intended for general industry use to increase productivity and reduce overall costs by automating industrial applications. It combines field-proven technology and enhanced dexterity with a keen focus on safety, design and product aesthetics. With a streamlined design and brushed metal exterior, the new powerhouse of a robot combines beauty and speed together with absolute precision and repeatability. Primary applications include assembly, material handling, machine tending, dispensing and pick & place.