Golang Powered Robotics

From Gobot's homepage:

Gobot is a framework and set of libraries in the Go programming language for robotics, physical computing, and the Internet of Things... (cont'd)

UBR-1 Available for Purchase

From Unbounded Robotics:

Beginning today, UBR-1 is available for purchase. To order your own state-of-the-art mobile manipulation platform please contact sales@unboundedrobotics.com.

The majority of requests we have had to date have been for the UBR-1 pro model, so we have decided to focus on and ship only one model. The cost of the UBR-1 is $50,000 and will include the newest Hokuyo UST-20LX scanning laser. UBR-1 now offers a higher maximum speed, a state of the art laser scanner, more RAM, and a larger hard drive capacity. In addition to the UBR-1 we are happy to announce that we will also be offering a ROS Ready Computer Package to make setting up your robot even easier. This package includes a computer with Ubuntu and ROS pre-installed, and a wireless router pre-configured to connect your robot and computer.

We are planning to start shipping robots to their destinations in late August... (cont'd)

Magnetically Actuated Micro-robots For Micro-Factories

From SRI International:

SRI is developing new technology to reliably control thousands of micro-robots for smart manufacturing of macro-scale products in compact, integrated systems... (cont'd)


From Kåre Halvorsen project on the Lynxmotion forums:

Sphere shaped hexapod that I plan to give the following features:

  • Roll freely like a ball
  • Have different sort of locomotion for moving in any direction
  • Variable inner-body dimensions
  • Transform from a sphere shape into a hexapod and vice versa
  • Walk like a hexapod


Project's summary on Robotee and original forum thread.

New Computer Vision Project Can Solve reCAPTCHAs With Over 99% Accuracy

From Google Online Security Blog:

Translating a street address to an exact location on a map is harder than it seems. To take on this challenge and make Google Maps even more useful, we’ve been working on a new system to help locate addresses even more accurately, using some of the technology from the Street View and reCAPTCHA teams.

This technology finds and reads street numbers in Street View, and correlates those numbers with existing addresses to pinpoint their exact location on Google Maps.

We show that this system is able to accurately detect and read difficult numbers in Street View with 90% accuracy.

Turns out that this new algorithm can also be used to read CAPTCHA puzzles—we found that it can decipher the hardest distorted text puzzles from reCAPTCHA with over 99% accuracy... (cont'd) (full technical paper)

A World Of Hardware Startups

Upverter has a hardware startup master list and world map. Currently contains around 150 robotics companies, 500+ consumer hardware startups and a list of incubators, venture firms and everything else... (cont'd)

Raspberry Pi Compute Module

From Raspberry Pi Foundation:

The compute module contains the guts of a Raspberry Pi (the BCM2835 processor and 512Mbyte of RAM) as well as a 4Gbyte eMMC Flash device (which is the equivalent of the SD card in the Pi). This is all integrated on to a small 67.6x30mm board which fits into a standard DDR2 SODIMM connector (the same type of connector as used for laptop memory*). The Flash memory is connected directly to the processor on the board, but the remaining processor interfaces are available to the user via the connector pins. You get the full flexibility of the BCM2835 SoC (which means that many more GPIOs and interfaces are available as compared to the Raspberry Pi), and designing the module into a custom system should be relatively straightforward as we’ve put all the tricky bits onto the module itself.

So what you are seeing here is a Raspberry Pi shrunk down to fit on a SODIMM with onboard memory, whose connectors you can customise for your own needs.

The Compute Module is primarily designed for those who are going to create their own PCB. However, we are also launching something called the Compute Module IO Board to help designers get started.

$99 MinnowBoard MAX With Intel Bay Trail-I SoC

From MinnowBoard:

MinnowBoard MAX is another open hardware embedded board we've developed to serve the needs of both the professional developer and hacker/maker community. Based on Intel's new Atom Bay Trail SoC platform, it offers a new generation of performance and features, but remains petite in size and cost.

Our entry-level SKU will be $99 MSRP, with additional board configuration options to be made available. All models will include 64-bit processors, USB 3.0, and Intel HD graphics with open source accelerated drivers for Linux, to just name a few of the new features!

  • $99 MSRP: E3815 (single-core, 1.46 GHz), 1GB
  • $129 MSRP: E3825 (dual-core, 1.33 GHz), 2GB
  • HDMI (micro HDMI connector)
  • 1 – Micro SD SDIO
  • 1 – SATA2 3Gb/sec
  • 1 – USB 3.0 (host)
  • 1 – USB 2.0 (host)
  • 1 – Serial debug via FTDI cable (sold separately)
  • 10/100/1000 Ethernet

The low-speed expansion port is a 2×13 (26-pin) male 0.1″ pin header.

  • SPI, I2C, I2S Audio, 2x UARTs (TTL-level), 8x GPIO (2x supporting PWM), +5V, GND

The high-speed expansion port is a 60-pin, high-density connector.

  • 1x PCIe Gen 2.0 Lane, 1x SATA2 3Gb/sec, 1x USB 2.0 host, I2C, GPIO, JTAG, +5V, GND

Evolving Soft Robots With Multiple Materials

From Evolving AI Lab:

Here we evolve the bodies of soft robots made of multiple materials (muscle, bone, & support tissue) to move quickly. Evolution produces a diverse array of fun, wacky, interesting, but ultimately functional soft robots. Enjoy! (full paper)

Flexible Muscle-Based Locomotion for Bipedal Creatures

From John Goatstream's Vimeo Videos:

We present a muscle-based control method for simulated bipeds in which both the muscle routing and control parameters are optimized. This yields a generic locomotion control method that supports a variety of bipedal creatures. All actuation forces are the result of 3D simulated muscles, and a model of neural delay is included for all feedback paths. As a result, our controllers generate torque patterns that incorporate biomechanical constraints. The synthesized controllers find different gaits based on target speed, can cope with uneven terrain and external perturbations, and can steer to target directions... (full paper) (follow up videos)

DARPA Begins Phase One of VTOL X-Plane Program


DARPA tasks four companies with designing new aircraft to revolutionize vertical takeoff and landing (VTOL) flight capabilities.

For generations, new designs for vertical takeoff and landing aircraft have remained unable to increase top speed without sacrificing range, efficiency or the ability to do useful work. DARPA’s VTOL Experimental Plane (VTOL X-Plane) program seeks to overcome these challenges through innovative cross-pollination between the fixed-wing and rotary-wing worlds, to enable radical improvements in vertical and cruise flight capabilities. In an important step toward that goal, DARPA has awarded prime contracts for Phase 1 of VTOL X-Plane to four companies: 

  • Aurora Flight Sciences Corporation
  • The Boeing Company
  • Karem Aircraft, Inc.
  • Sikorsky Aircraft Corporation

“We were looking for different approaches to solve this extremely challenging problem, and we got them,” said Ashish Bagai, DARPA program manager. “The proposals we’ve chosen aim to create new technologies and incorporate existing ones that VTOL designs so far have not succeeded in developing. We’re eager to see if the performers can integrate their ideas into designs that could potentially achieve the performance goals we’ve set.”

VTOL X-Plane seeks to develop a technology demonstrator that could:

  • Achieve a top sustained flight speed of 300 kt-400 kt
  • Raise aircraft hover efficiency from 60 percent to at least 75 percent
  • Present a more favorable cruise lift-to-drag ratio of at least 10, up from 5-6
  • Carry a useful load of at least 40 percent of the vehicle’s projected gross weight of 10,000-12,000 pounds

All four winning companies proposed designs for unmanned vehicles, but the technologies that VTOL X-Plane intends to develop could apply equally well to manned aircraft. Another common element among the designs is that they all incorporate multipurpose technologies to varying degrees. Multipurpose technologies decrease the number of systems in a vehicle and its overall mechanical complexity. Multipurpose technologies also use space and weight more efficiently to improve performance and enable new and improved capabilities.

The next major milestone for VTOL X-Plane is scheduled for late 2015, when the four performers are required to submit preliminary designs. At that point, DARPA plans to review the designs to decide which to build as a technology demonstrator, with the goal of performing flight tests in the 2017-18 timeframe. 

Soft Robotic Fish

MIT News:

Soft robots — which don't just have soft exteriors but are also powered by fluid flowing through flexible channels — have become a sufficiently popular research topic that they now have their own journal, Soft Robotics. In the first issue of that journal, out this month, MIT researchers report the first self-contained autonomous soft robot, a "fish" that can execute an escape maneuver, convulsing its body to change direction, in just 100 milliseconds, or as quickly as a real fish can.


SimpleCV library for Python:

SimpleCV is an open source framework for building computer vision applications. With it, you get access to several high-powered computer vision libraries such as OpenCV – without having to first learn about bit depths, file formats, color spaces, buffer management, eigenvalues, or matrix versus bitmap storage. This is computer vision made easy... (cont'd)

Spherical Parallel Manipulators

The Agile Eye by Gosselin, Université Laval:

The Agile Eye is a 3-DOF 3-RRR spherical parallel manipulator developed for the rapid orientation of a camera. Its mechanical architecture leads to high velocities and accelerations.

The workspace of the Agile Eye is superior to that of the human eye. The miniature camera attached to the end-effector can be pointed in a cone of vision of 140° with ±30° in torsion. Moreover, due to its low inertia and its inherent stiffness, the mechanism can achieve angular velocities above 1000 °/sec and angular accelerations greater than 20000 °/sec2 which is beyond the capabilities of the human eye... (cont'd)

Hip Joint of the Bipedal Autonomous Robot LISA by Institute of Automatic Control:

The hip joint consists of three active rotational degrees of freedom whose rotational axes intersect in one point. In contrast to most hip joints of other bipedal robots LISA's hip joint are built as spherical parallel manipulators. A comparable cardanian joint would lead to a heavier weight and due to the functionality the masses of some engines would have to be accelerated by other engines during motion.

Due to the parallel manipulator all engines rest to the trunk. Only a coordinated interaction of all engines leads to a controlled motion of the thigh. This enables a design with a thigh of minimal and a trunk of maximal weight which is an advantageous weight distribution for bipedal walking. Because of the parallel manipulator structure forces applied on the thigh are distributed among all three engines and therefore the power of the engines adds up... (cont'd)

Robot Launch 2014 Startup Competition

From Robot Launch:

Robot Launch 2014 is open to any robot startup pre/partial Series A. We're looking for startups with prototypes and business models. But we're also interested in any great robot startup idea.

What is a robot startup? Well, it could be a robot or an autonomous mobile manipulator. OR it could be an appliance or connected device. OR it could be a sensor or actuator or AI that makes robots better.

Prizes include money, mentoring, meetings and free legal and startup services from our supporting organizations, Silicon Valley Robotics, Indiegogo, WilmerHale, Grishin Robotics, Bosch Venture Capital, Lemnos Labs, Luxr, Robolution Capital, Lux Capital, OATV, Khosla Ventures, a showcase at Solid and media coverage by Robohub.

  • Round One entries open Feb 20
  • Round One entries close March 30 midnight (PST)
  • Top 30 announced April 10
  • Finalists announced April 30
  • Final Showcase (tbc) May 20

You can enter here.

Records 226 to 240 of 483

First | Previous | Next | Last

Industrial Robotics - Featured Product

igus® Robolink: Articulated joint modules for robots. Lightweight. Compact.

igus® Robolink: Articulated joint modules for robots. Lightweight. Compact.

Robolink: Articulated joint modules for robots. igus® now offers a lightweight, maintenance- and corrosion-free range of robot joints for humanoid systems or other automated applications. The carbon-fiber plastic joints can rotate and oscillate freely via four wire ropes. No more expensive milling, cutting or DIY systems. Moving mass is reduced to a minimum. The actuators (engines, pneumatics and hydraulics) and the control module (DP, PC) are kept separate. Contact igus® for more information and free samples.