Rex: A Single-board Computer With A Full OS That Is Designed For Robots

From the Rex Kickstarter : Why do you want Rex? There are two general classes of electronics used in robot hardware: microcontrollers (ex. Arduino) and single-board computers. Microcontrollers are great for projects that only require a single program to be run, quickly and without overhead, like controlling LEDs and motors. Single-board computers are great for anything you'd need a cheap, small computer for - like networking applications and image processing. Advanced autonomous robots require the strengths of both. A system developed around Rex, being made specifically for robots, brings it all together in one nice little package in a way that has never been done before. Hardware Specs: Texas Instruments DM3730 1GHz 32-bit ARM Cortex-A8 Processor core 800MHz DSP core 512MB LPDDR RAM USB Host port MicroSD slot Camera Module port 3.5mm Audio-in jack 3.5mm Audio-out jack 5V DC input for desktop development Each Rex will come pre-installed with Alphalem OS, a FOSS custom linux distribution. It includes a core set of built-in device drivers - ones that we've hand-picked as being the most useful for robots (like USB WiFi adapters and cameras). We'll publish the list in a wiki on our website. Here are the other main features: An Arduino-style programming environment with support for multiple programming languages (C, C++, Python). A special task manager called the Master Control Program (MCP). An API for message passing in multi-process applications. A standard Linux filesystem which will allow you to install just about any Linux software that can be cross-compiled for ARM. Libraries for common processes such as I2C communication, face detection, and sensor reading.

DARPA Robotics Challenge Trials Live Broadcast

The DRC Trials are happening today and tomorrow (December 20-21, 2013) at the Homestead-Miami Speedway. Teams will attempt to guide their robots through eight individual, physical tasks that test mobility, manipulation, dexterity, perception, and operator control mechanisms; You can watch the live stream here.

Google Puts Money on Robots, Using the Man Behind Android

New York Times: Over the last half-year, Google has quietly acquired seven technology companies in an effort to create a new generation of robots. And the engineer heading the effort is Andy Rubin, the man who built Google’s Android software into the world’s dominant force in smartphones.... ( full article )

Dynamic Probabilistic Volumetric Models

From Ali Osman Ulusoy, Octavian Biris, Joseph Mundy of Brown University: This paper presents a probabilistic volumetric frame- work for image based modeling of general dynamic 3-d scenes. The framework is targeted towards high quality modeling of complex scenes evolving over thousands of frames. Extensive storage and computational resources are required in processing large scale space-time (4-d) data. Existing methods typically store separate 3-d models at each time step and do not address such limitations. A novel 4-d representation is proposed that adaptively subdivides in space and time to explain the appearance of 3-d dynamic surfaces. This representation is shown to achieve compres- sion of 4-d data and provide efficient spatio-temporal pro- cessing. Theadvancesoftheproposedframeworkisdemon- strated on standard datasets using free-viewpoint video and 3-d tracking applications.... ( full paper )

Trainable Arduiono Arm

From Navic209's youtube channel:   Inspired by the Baxter robot, this arm can be trained to move with your own hands. Once the train button is pressed, you move the arm and gripper as needed while the Arduino stores the positions in EEPROM. After that the arm will replay the motion as needed.   Youtube channel Source on Github Additional projects

PrimeSense Reportedly Aquired By Apple

According to AllThingsD Apple is in the process of buying PrimeSense. PrimeSense is the company that developed and licensed the hardware and chip design used in the original Kinect. This could have an effect on several low cost depth cameras including the ASUS Xtion which uses  PrimeSense  hardware  or the $200 developer camera sold directly from PrimeSense . Their online store is still open but who know for how long.

Triquad

IEEE Spectrum: As cool as quadrotors are, in most cases they're simply not as good as helicopters. Because of the way they're designed (with four small rotors instead of one big one), they're less powerful, less efficient, and less maneuverable. The power and efficiency issues come from the fact that one big rotor generates more lift per aircraft footprint than four small rotors, and as for maneuverability, a helicopter that can alter rotor pitch instantly will always outmaneuver a quadrotor that can only control blade speed. Seriously, try doing this with a quadrotor. So, the thing that quadrotors have going for them is that they're simple. Helicopters have complex main rotor heads, with shafts and bearings and linkages all over the place, while quadrotors just have four motors and that's it. The University of Queensland researchers came up with a "Y4" configuration that aims to take all the good bits of helicopters and make them as simple as quadrotors. I'm just going to start calling this new design a triquad. Keep in mind that this is still a quadrotor: it just had things shifted around a little bit. Almost all of the triquad's lift comes from its big main fixed-pitch rotor, located at the center of the "Y" (pictured below). The three little fixed-pitch rotors in the "Y" configuration are angled (at a fixed 45 degrees) to provide counter-torque (which they do slightly more efficiently than a helicopter tail rotor) along with pitch and roll control. Here's how the control works... cont'd at IEEE Spectrum Follow up discussions: DIY Drones post and discussion. Hackernews post.

Complete videos from the IROS 2013 workshop: "Understanding Robotics and Public Opinion Workshop From IROS 2013"

Robohub.org article with all videos or straight youtube playlist link .

littleBits

littleBits : littleBits makes an opensource library of electronic modules that snap together with tiny magnets for prototyping, learning, and fun. What is littleBits? from littleBits on Vimeo .

New Video of ACM-R5H Snake Robot

HiBot : The new ACM-R5H swimming in a new pool. It is fully customizable in its colors (fins and body) and in the electronics that may be fitted in the front and rear unit. The robot length can be also easily changed by adding or removing units, in this case it is a version of 6 active joints.

Fuelmatics Automatic Refueling System

S4A: Scratch modification for Arduino

S4A: Scratch for Arduino (S4A) is a modified version of Scratch , ready to interact with Arduino boards. Supported boards S4A works with Arduino Diecimila, Duemilanove and Uno. Other boards haven't been tested, but they may also work. Connectivity Components have to be connected in a particular way. S4A allows for 6 analog inputs (analog pins), 2 digital inputs (digital pins 2 and 3), 3 analog outputs (digital pins 5, 6 and 9), 3 digital outputs (pins 10, 11 and 13) and 4 special outputs to connect Parallax continuous rotation servomotors (digital pins 4, 7, 8 and 12). You can manage a board wirelessly by attaching an RF module to it, such as Xbee. S4A allows you to control as many boards as USB ports you have. Compatibility S4A is backwards compatible with Scratch, so you can open Scratch projects in it. However, you won't be able to share your projects on the Scratch community website because doing so goes against the Scratch terms of use. Take in account that this compatibility doesn't work both ways, so you won't be able to open an S4A project from within the original Scratch. Using a PicoBoard along with an Arduino board is also supported... cont'd

The Poppy Project

The Poppy Project : OPEN SOURCE Both software and hardware are available under an open source licence for academics, artists and geeks. EASY TO REPAIR AND DUPLICATE Poppy only uses off-the-shelf components (motors and electronics) and limbs that can be printed with regular 3D printing services. OPTIMIZED FOR BIPED LOCOMOTION Poppy’s body has a morphology modeling human skeleton: bended legs, multi-articulated trunk, soft body. This increases robustness, agility and stability during the walking. AFFORDABLE The overall materials needed to build your own Poppy robot costs around 7500€ ($10500, including motors, electronics and 3D printed parts). We hope the community will find ways to build and use even cheaper solutions.

Introducing UBR-1

Introducing UBR-1 from Unbounded Robotics on Vimeo .

UBR-1 Robot From Unbounded Robotics Revolutionizes Affordable Mobile Manipulation

Unbounded has been working in stealth mode for the past year, but our best guess was that they were developing a low-cost mobile manipulator for research and education: something like a PR2, except (we were hoping) significantly cheaper. Today, Unbounded is unveiling UBR-1, a shiny new human-scale one-armed robot designed to completely revolutionize the market for research and education robotics and beyond, for just a tiny fraction of the cost of similar platforms. UBR-1 is a 13-DoF mobile robot that includes a 7-DoF arm. It navigates with a laser scanner in its base, and uses a PrimeSense 3D sensor in its head for perception. Thanks to a torso lift, the robot can pick objects up off the floor, and put them onto tables and countertops. It's got a beefy computer in the torso, along with two big fat batteries that'll keep it running for up to 5 hours continuously, or up to 10 if it's not moving around too much, and you can get a charging dock so that you never have to plug it in. UBR-1 runs ROS, and comes out of the box with the ability to navigate and interact with objects. And (arguably) the most important spec of all is that UBR-1 starts at just $35,000, which is wicked cheap for a robot this capable.

Records 331 to 345 of 562

First | Previous | Next | Last

Industrial Robotics - Featured Product

DENSO Small Assembly Robots

DENSO Small Assembly Robots

DENSO is the world's largest manufacturer - and user - of small assembly robots, employing over 17,000 of its robots in its own facilities. Over 77,000 additional DENSO robots are used by other companies worldwide. The compact, high-speed robots are used in traditional manufacturing sectors, as well as in advanced-technology applications in the medical, pharmaceutical and life sciences industries. Learn more about DENSO Robotics