Robots Of The Chernobyl Disaster

IO9 has photos taken from an open air museum in the Ukraine that holds a bunch of robots used in the clean up of the Chernobyl disaster (1986).

If you really want something heavy for Monday's breakfast---below is a documentary about the Russian soldiers, known as "biorobots", that sealed the reactor manually for the most part.

iRobot And Cisco's Ava 500 Telepresence

Linkbot Modular Robotic Platform Kickstarter


Each robot has three buttons for user interface and a 3-axis accelerometer. The brain behind all these features is the ATmega128RFA1 by Atmel, running at 16MHz. It integrates an 8-bit AVR microcontroller with an 802.15.4-compliant and ZigBee-capable radio transceiver operating in the 2.4GHz band. Out of the box, it communicates at 250kbps over the air, but with custom firmware you can enable speeds of up to 2Mbps for an 8X increase in throughput.
  • Atmel AVR Microcontroller: Compatible with Arduino so you can re-flash with your own firmware using the on-board bootloader
  • ZigBee-Capable Radio: Communicate wirelessly with an 802.15.4-compliant radio, create mesh networks, control and monitor remotely
  • Multi-Color (RGB) LED: Select from a full spectrum of colors
  • 3-Axis Accelerometer: Detect free-falls, bumps, tilt angles
  • Buzzer: Play notes or complete tunes, give audio responses to inputs
  • RJ11 (6P4C) Expansion Connector: Use a standard phone cable to connect our Bluetooth/breakout boards or your own electronics to your Linkbot's power and I2C bus
  • 3x Buttons - Easily control Linkbot modes and functions or write custom functions for button presses
  • Micro-USB Connector: Connect to a computer or charger with a standard Micro-USB cable
  • Rechargeable Lithium-Ion Battery: Run your Linkbot for over 3 hours for most applications before having to charge
  • High Torque:Weight-ratio Motors: Light-but-strong motors produce up to 100oz-in of torque
  • Absolute Encoding: Precisely control and measure speeds and angles down to 0.5 degrees
  • BaroboLink Software: Graphical interface lets you run programs, actuate motors and read sensors on your computer
  • Polycarbonate Housing: Super-durable, drop-tested from second-story building (not recommended) so it can handle your demanding projects
  • SnapConnector Mounting Surfaces: Quickly connect and remove wheels, connecting plates, grabbers, even multiple Linkbots; or connect your own accessories with standard screws

Chinese DIY Inventions

The Atlantic has a great gallery of modern Chinese DIY inventions including the rickshaw robot pictured above.

Arduino Yún: Arduino With A Wifi System-on-a-chip

Arduino Yún is the combination of a classic Arduino Leonardo (based on the Atmega32U4 processor) with a Wifi system-on-a-chip running Linino (a MIPS GNU/Linux based on OpenWRT). It’s based on the ATMega32u4 microcontroller and on the Atheros AR9331, a system on a chip running Linino, a customized version of OpenWRT, the most used Linux distribution for embedded devices.

Available at the end of June for $69.

Arduino Yun Specifications (via
  • MCU – Atmel ATMega32u4 @ 16 MHz (same as the one used in Leonardo board) with 2.5KB SRAM and 32KB flash

  • SoC – Atheros AR9331 MIPS-based Wi-Fi SoC running Linino, Arduino’s own Linux distribution based on OpenWRT. It’s the same chipset as in TP-Link WR703N router.

  • Storage – microSD card slot

  • USB – micro USB connector + full USB host port

  • Connectivity – Ethernet + Wi-Fi

  • 14 digital input/output pins (of which 7 can be used as PWM outputs and 12 as analog inputs)

The Official Arduino Robot

The Arduino Robot is the first official Arduino on wheels. The robot has two processors, one on each of its two boards. The Motor Board controls the motors, and the Control Board reads sensors and decides how to operate. Each of the boards is a full Arduino board programmable using the Arduino IDE.

Both Motor and Control boards are microcontroller boards based on the ATmega32u4. The Robot has many of its pins mapped to on-board sensors and actuators.

Programming the robot is similar to the process with the Arduino Leonardo. Both processors have built-in USB communication, eliminating the need for a secondary processor. This allows the Robot to appear to a connected computer as a virtual (CDC) serial / COM port.

As always with Arduino, every element of the platform – hardware, software and documentation – is freely available and open-source.

On sale at the Maker Faire in San Mateo (May 17-19) and available online starting in July.

Makr Shakr

The Moscone Center, San Francisco

Makr Shakr is a new robotic bartending system that allows users to create, in real-time, personalized cocktail recipes through a smart phone application and transform them into crowd-sourced drink combinations. The cocktail creation is assembled by three robotic arms, whose movements - visualized on a large display positioned behind the bar - mimic the actions of a bartender, from the shaking of a martini to the thin slicing of a lemon garnish. The system explores the new dynamics of social creation and consumption - ‘design, make and enjoy’ - and in just the time needed to prepare a new cocktail.

MoveIt! Software Framework for Motion Planning in ROS


Willow Garage is proud to announce the initial release of MoveIt! : new software targeted at allowing you to build advanced applications integrating motion planning, kinematics, collision checking with grasping, manipulation, navigation, perception, and control. MoveIt! is robot agnostic software that can be quickly set up with your robot if a URDF representation of the robot is available. The MoveIt! Setup Assistant lets you configure MoveIt! for any robot, allowing you to visualize and interact with the robot model quickly.

MoveIt! can incorporate both actual sensor data and simulated models to build an environment representation. Sensor information (3D) can be automatically integrated realtime in the representation of the world that MoveIt! maintains. CAD models can also be imported in the same world representation if desired. Collision-free motion planning, execution and monitoring are core capabilities that MoveIt! provides for any robot. MoveIt! updates its representation of the environment on the fly, enabling reactive motion planning and execution, which is essential for applications in human-robot collaborative environments.

MoveIt! interfaces with controllers through a standard ROS interface, allowing for ease of inter-operability, i.e. the ability to use the same higher-level software with a variety of robots without needing to change code. MoveIt! is architected to be flexible, using a plugin architecture to allow users to integrate their own custom components while still providing out-of-the-box functionality using default implementations. Furthermore, the ROS communication and configuration layer of MoveIt! is separated from core computational components such as motion planning or collision checking, the latter components being provided separately as C++ libraries.

Available here.

RIO (Raspberry IO) Card

Roboteq, Inc launched a kickstarter project named RIO (for Raspberry IO) and aimed at creating an intelligent I/O card that stacks over the $35 Raspberry PI Linux Single Board computer.

Power for the PI from any DC source
RIO includes a 3A DC/DC converter that may be connected to a 10V to 40V DC supply, and generates the 5V needed by the PI and the RIO cards.

21 I/O lines to Connect Just About Anything
RIO provides a total of 8 digital outputs rated up to 1A and 30V max, which may also be used as digital inputs.

The card includes 13 inputs, each of which can be configured as a digital input, 0-5V analog input with 12-bit resolution, or as a timer input. In the timer mode, the inputs can capture pulse width, frequency, quadrature encoder counts, or duty cycle. Most of the input pins can also be configured as PWM outputs for driving RC servos, or dimmable lights.

Serial Connectivity and CAN Networking
Two serial ports are present on the card. One is fully RS232 compliant with programmable baud rate up to 115200 bits/s for connection to motor controllers, scanners, PC or any other RS232 device. The second is RS485 compatible, enabling, among other things, DMX512 connectivity to light show equipement. Optionally, a 3rd serial port uses TTL levels for direct interface to non-buffered, non-inverted USARTs as these found on most microcontrollers, like the Arduino.

A CAN bus interface is also present on the Rio card for connecting to CAN-compatible device, on a low cost twisted pair network at speeds up to 1Mbit/s.

Full Kickstarter details here.

DARPA's Low Cost Hand Hardware

The ARM-H track of DARPA's Autonomous Robotic Manipulation (ARM) program focuses on development of robust, low-cost and dexterous robotic hand hardware. DARPA funded performers to design and build hand mechanisms that could replace the claw-like hands currently used on robots with hands incorporating 3-4 fingers and useable palms. The teams successfully produced hands that can be manufactured for as little as $3,000 per unit (in batches of 1,000 or more), down from the $50,000 cost of current technology. The new hands also incorporate sufficient dexterity to enable manipulation of objects in their fingers when controlled by a skilled operator.


Demonstration of the first controlled flight of an insect-sized robot is the culmination of more than a decade's work, led by researchers at the Harvard School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard. Half the size of a paperclip, weighing less than a tenth of a gram, the robot was inspired by the biology of a fly, with submillimeter-scale anatomy and two wafer-thin wings that flap almost invisibly, 120 times per second.

Applying Motion-capture Data From Animals To Quadruped Robots

IEEE Spectrum has a short article about how the Italian Institute of Technology and the Swiss Federal Institute of Technology are using motion-capture from horses walking, trotting, etc and transferring it to the locomotion of their quadruped robots.

$45 BeagleBone Black Announced

Latest generation BeagleBone is up for sale today!

Inexpensive Tactile Sensors for Robotic Hands

TakkTile's technology leverages MEMS barometers to deliver 1-gram sensitivity for a fraction of the cost of existing systems, in a package durable enough it can survive being hit with a baseball bat. From original research paper:

A new approach to the construction of tactile array sensors based on barometric pressure sensor chips and standard printed circuit boards. The chips include tightly integrated instrumentation amplifiers, analog to digital converters, pressure and temperature sensors, and control circuitry that provides excellent signal quality over standard digital bus interfaces. The resulting array electronics can be easily encapsulated with soft polymers to provide robust and compliant grasping surfaces for specific hand designs. The use of standard commercial-off-the-shelf technologies means that only basic electrical and mechanical skills are required to build effective tactile sensors for new applications.

For $299 the TakkTile Starter Kit includes two TakkStrips cast in rubber and a Arduino Micro.

The First Level of Super Mario Bros. is Easy with Lexicographic Orderings and Time Travel.

After that it gets a little tricky.

Records 421 to 435 of 613

First | Previous | Next | Last

Featured Product

Zaber's Fastest, Longest Travel Stage

Zaber's Fastest, Longest Travel Stage

Zaber's new and improved stage (X-BLQ-E) is a closed-loop, belt-driven motorized linear stage with built-in motor encoder and controller. With travel lengths up to 3 m, 10 µm repeatability, and a maximum speed of 2.0 m/s, X-BLQ-E stages are perfect for rapid positioning over large distances. A built-in motor encoder allows closed-loop operation and slip/stall recovery, and an optional indexed knob provides manual control for operation without a computer. Like all Zaber products, the X-BLQ-E Series is designed for easy set-up and operation.