Stanford's 'Jackrabbot' paves way for social robotics

Caitlin Ju for The Stanford Daily:  Stanford researchers in the Computational Vision and Geometry Lab have designed an autonomously navigating robot prototype that they say understands implicit social conventions and human behavior. Named “Jackrabbot” after the swift but cautious jackrabbit, the visually intelligent and socially amicable robot is able to maneuver crowds and pedestrian spaces. A white ball on wheels, the Jackrabbot is built on a Segway system and contains a computing unit and multiple sensors that acquire a 3-D structure of the surrounding environment. 360-degree cameras and GPS also enhance the robot’s navigation and detection capabilities. To interact smoothly in public settings, the robot has to know how to avoid someone in a natural way, how to yield the right-of-way and how to leave personal space, among other skills.   Cont'd...

Records 1 to 1 of 1

Featured Product

Zaber's X-LRQ-DE Series:  High Precision Stages with Built-in Controllers and Linear Encoders

Zaber's X-LRQ-DE Series: High Precision Stages with Built-in Controllers and Linear Encoders

Zaber's X-LRQ-DE Series of linear stages have high stiffness, load, and lifetime capabilities in a compact size. The integrated linear encoder combined with stage calibration provides high accuracy positioning over the full travel of the device. At 36 mm high, these stages are excellent for applications where a low profile is required. The X-LRQ-DE's innovative design allows speeds up to 205 mm/s and loads up to 100 kg. Like all Zaber products, the X-LRQ-DE Series is designed for easy set-up and operation.