Researchers Unveil Soft Robotics ‘Toolkit'

A new resource unveiled today by researchers from several Harvard University labs in collaboration with Trinity College Dublin provides both experienced and aspiring researchers with the intellectual raw materials needed to design, build, and operate robots made from soft, flexible materials.

With the advent of low-cost 3D printing, laser cutters, and other advances in manufacturing technology, soft robotics is emerging as an increasingly important field. Using principles drawn from conventional rigid robot design, but working with pliable materials, engineers are pioneering the use of soft robotics for assisting in a wide variety of tasks such as physical therapy, minimally invasive surgery, and search-and-rescue operations in dangerous environments.


The Soft Robotics Toolkit is an online treasure trove of downloadable, open-source plans, how-to videos, and case studies to assist users in the design, fabrication, modeling, characterization, and control of soft robotic devices. It will provide researchers with a level of detail not typically found in academic research papers, including 3D models, bills of materials, raw experimental data, multimedia step-by-step tutorials, and case studies of various soft robot designs.

"The goal of the toolkit is to advance the field of soft robotics by allowing designers and researchers to build upon each others work," says Conor Walsh, Assistant Professor of Mechanical and Biomedical Engineering at the Harvard School of Engineering and Applied Sciences (SEAS) and a Core Faculty Member at the Wyss Institute for Biologically Inspired Engineering at Harvard University.

By creating a common resource for sharing design approaches, prototyping and fabrication techniques, and technical knowledge, the toolkits developers hope to stimulate the creation of new kinds of soft devices, tools, and methods.

According to Walsh, who teaches a popular course in medical device design at SEAS and is founder of the Harvard Biodesign Lab, soft robotics is especially well suited to shared design tools because many of the required components, such as regulators, valves, and microcontrollers, are largely interchangeable between systems.

Dónal Holland, a visiting lecturer in engineering sciences at SEAS and graduate student at Trinity College Dublin, is one of the lead developers of the toolkit and is especially interested in the toolkits potential as an educational resource.

"One thing weve seen in design courses is that students greatly benefit from access to more experienced peers—say, postdocs in a research lab—who can guide them through their work," Holland says. "But scaling that up is difficult; you quickly run out of time and people. The toolkit is designed to capture the expertise and make it easily accessible to students."

Just as open-source software has spurred far-flung innovation in computing, "open design" hardware platforms—coupled with advances in computer-aided engineering and more accessible prototyping capabilities—have the potential to foster remote collaboration on common mechanical engineering projects, unleashing crowdsourced creativity in robotics and other fields.

"Open design can have as disruptive an influence on technology development in this century as open source did in the last," says Gareth J. Bennett, assistant professor of mechanical and manufacturing engineering at Trinity College Dublin and a coauthor of a paper in Soft Robotics that describes the toolkit development. Additional coauthors are Evelyn J. Park 13, a SEAS research fellow in materials science and engineering, and Panagiotis Polygerinos, a postdoctoral fellow in the Harvard Biodesign Lab at SEAS and the Wyss Institute.

Much of the material included in the toolkit sprang from the labs of Robert J. Wood, Charles River Professor of Engineering and Applied Sciences at SEAS, and chemist George M. Whitesides, Woodford L. and Ann A. Flowers University Professor, two researchers whose work has helped establish Harvard as a leader in soft robotics. Wood and Whitesides are also core faculty members of the Wyss Institute.

www.seas.harvard.edu/

Featured Product

BitFlow Introduces 6th Generation Camera Link Frame Grabber: The Axion

BitFlow Introduces 6th Generation Camera Link Frame Grabber: The Axion

BitFlow has offered a Camera Link frame grabbers for almost 15 years. This latest offering, our 6th generation combines the power of CoaXPress with the requirements of Camera Link 2.0. Enabling a single or two camera system to operate at up to 850 MB/S per camera, the Axion-CL family is the best choice for CL frame grabber. Like the Cyton-CXP frame grabber, the Axion-CL leverages features such as the new StreamSync system, a highly optimized DMA engine, and expanded I/O capabilities that provide unprecedented flexibility in routing. There are two options available; Axion 1xE & Axion 2xE. The Axion 1xE is compatible with one base, medium, full or 80-bit camera offering PoCL, Power over Camera Link, on both connectors. The Axion 2xE is compatible with two base, medium, full or 80-bit cameras offering PoCL on both connectors for both cameras. The Axion-CL is a culmination of the continuous improvements and updates BitFlow has made to Camera Link frame grabbers.