Getting Started with Collaborative Robots - Part 2 - How to Identify Potential Processes for Automation

At this point, we need to discuss the strengths and limitations of process automation with collaborative robots.

IREX - Meet the Japanese robots that do what humans can't

By Sam Byford for The Verge:  Nearly half the jobs in Japan could be performed by robots in a decade or two, according to a recent study by Nomura Research Institute. If that's the case, then the International Robot Exhibition — IREX for short — is going to be the best place possible to get a glimpse of Japan's future. Held in Tokyo once every two years since 1973, IREX is the biggest robot show in the world, and it features everything from cute communication bots to immensely powerful industrial machinery. Companies like Fanuc, which makes robot factory equipment used by Apple and Tesla but generally stays out of the spotlight, take center stage at IREX to demonstrate how effortlessly their articulated arms can pick up entire cars. It's a show where online video companies' dancing idol robots rub shoulders with government-sponsored androids designed to save lives in natural disasters. As you might imagine, it's quite the place to walk around.   Cont'd...

Getting Started with Collaborative Robots? Part 1 - What can collaborative robots do?

This is the first in a series of articles about Collaborative Robots

Father of Robotics Joseph F. Engelberger Dies at Age 90

Joseph F. Engelberger, an engineer and entrepreneur who pioneered the robotics field, died peacefully at his home this morning, December 1, 2015, in Newtown, Connecticut. Engelberger - widely known as the "Father of Robotics" and creator of the world's first industrial robot - revolutionized modern industrial and automotive manufacturing processes and went on to establish robotics in human services. Engelberger was 90 years old.  Engelberger, an industry advocate, author, and international ambassador for robotics, founded Unimation, Inc., in 1956, the world's first industrial robotics manufacturer. Working closely with inventor George Devol, he developed the first industrial robot in the U.S., called "Unimate", which was installed for industrial use in a General Motors plant in 1961. Since then, approximately three million industrial robots have been installed in manufacturing facilities around the world.   Full Press Release.

Festo's R&D Timeline - Part 4

More interesting stuff from Festo - ExoHand, CogniGame, SmartInversion, NanoForceGripper

Drone giant DJI launches crop-spraying drone

From BBC: Billion-dollar drone company DJI is expanding from consumer and camera drones into the agriculture industry. The Chinese firm's latest model is a crop-spraying drone, which it claims is "40 times more efficient" than manual spraying, despite having just 12 minutes of flight time. It will be released in China and Korea where hand-spraying is more common. DJI made $500m (£332m) in drone sales in 2014 and some analysts predict the firm will hit $1bn in sales this year. The Agras MG-1 has eight rotors and can carry up to 10kg of crop-spraying fluids per flight. The foldable device is also dustproof, water-resistant and made of anti-corrosive materials,  the firm says on its website (in Chinese).

Think You Know Industrial Robots? Think Again

Jim Lawton for Forbes:  Peter Drucker said “Culture eats strategy for breakfast” and in my experience there’s no industry where that wisdom holds more true than manufacturing. I’m not a hardened cynic, just a pragmatist, having spent the majority of my career bringing technology that disrupts the status quo – from inventory optimization and managing risk in the supply base to collaborative robots. Manufacturers are among the most skeptical buyers and for good reason – what they do is hard, complex and things are done the way they are done because it’s been proven to work. There are times though when the opportunity to transform the business is so compelling that – as Drucker said – executives need to spend whatever time is necessary to tear down the cultural barriers that are getting in the way of the strategy that capitalizes on the moment. In the category of robotics and industrial automation, now is one of those times. It’s been more than 50 years since Unimate went to work at a GM plant unloading heavy parts and welding them onto automobile frames. Manufacturing has changed a lot and today is on an evolutionary path toward the 4th industrial revolution. Unfortunately, while executives may be ready to move quickly toward the factories of the future for first mover advantage, many automation engineers remain entrenched in 20th century thinking about robots — when they were highly customized solutions, designed to perform one task over and over again, with a price tag to match.   Cont'd...

How Universal Robots Doubled Production at Tegra Medical

Medical device manufacturer Tegra Medical faced profit erosion as costs went up and customers demanded price cuts. Deploying three collaborative robot arms from Universal Robots to tend the machines manufacturingmedical instruments doubled throughput, freed up 11 full time positions and enabled the manufacturer to keep up with customer demand while keeping costs down.

MIP Robotics Launches Its First Model of New Generation Industrial Robot "MIP Junior",

MIP robotics is a startup founded in 2015 and based on research conducted for many years. The company aims to provide accessible, industrial robots, especially for SMIs (small and medium industries). In other words, like 3D printing in recent years, MIP wants to democratize industrial robotics. The robots can be used to automate repetitive, arduous or dangerous tasks; indeed it is possible to set the standard gripper arms: suction cup, hook, screwdriver, blade etc. Application examples are numerous: storing goods in cartons, checking the tightening torque, making the automated cutting, removing non-compliant products etc. MIP allows its customers to increase their productivity (and hence margins) in order to improve the quality or reduce the hardship. The investment can be made profitable in only 6 month. The "Junior " is a robot called "SCARA" (that is to say a horizontal arm) operating on a range of 600mm and fixed on a vertical axis in a standard 400mm high. These dimensions can be adjusted on demand. Its speed reaches up to 250mm/s with an accuracy of 0.5mm and can move up to 5kg. Junior is also characterized by its ease of use: for instance you can teach the robot the movements to be carried out by manually moving the robotic arm. Finally, the robot stops in case of impact, enabling collaborative applications if all safety conditions are met. While prices often start around €20,000 on the market, Junior is available from €8000.   Full Press Release:

ABB's largest ever robot is 25 percent faster than competitor robots in high payload range

ABB has introduced its highest payload, multipurpose industrial robot, the IRB 8700. The robot has a reach of 3.5 meters and is capable of handling a payload of up to 800 kg (1000 kg with the wrist down; 630 kg with LeanID). Designed for the ultimate in uptime, reliability and reduced maintenance, the IRB 8700 provides the lowest total cost of ownership among competitor high payload robot models. The new robot is targeted for material handling applications in the automotive, transportation and other heavy industries. “When designing the IRB 8700, we focused on combining ABB’s largest ever model with an unusually long reach for a robot in the high payload class,” said John Bubnikovich, vice president, sales and marketing, ABB Robotics North America. “Utilizing ABB’s superior motion control technology at high moments of inertia, the new robot automatically adapts and adjusts its speed to accommodate heavy and wide parts. With a compact footprint, optimized counterweight, parallel linkages, stiff axes and fewer drive motors, the IRB 8700 keeps its momentum down and speed up, providing unmatched agility and performance.” The IRB 8700, ABB’s largest ever robot offers all the functionality and expertise of the ABB portfolio in a much bigger package. The robot has only one motor and one gear per robot axis, while most other robots in this size class use dual motors and/or gears. In addition, there are no gas springs; only a reliable counterweight and mechanical springs for counter balancing. Together these design elements mean the IRB 8700 has fewer components and is able to deliver shorter cycle times and higher accuracy – making it 25% faster than any comparable competitor robots in its payload range.  Full Press Release:

Robotic Additive Manufacturing Platform for 3D Printing Composite Parts

The first-of-its-kind solution consists of a standard commercially available robot, composite deposition end-effector hardware and a comprehensive software suite.

Crowdfunding Projects For November

Here are a few projects we think are worth looking into. Be careful... it is crowdfunding.

Collaborative Robot Applications

Here are some of the best applications that can be done by a collaborative robot (in my own opinion).

UCSD to create robots that see, think and do

By Gary Robbins for the San Diego Union Tribune:  UC San Diego is creating a robotics institute that will develop machines that can interpret everything from subtle facial expressions to walking styles to size up what people are thinking, doing and feeling. The “See-Think-Do” technology is largely meant to anticipate and fulfill people’s everyday needs, especially the soaring number of older Americans who want to live out their lives in their own homes. Engineers envision robots that are so good at sizing up people, places and situations that they could help evacuate crowds from dangerous areas and pick through the rubble of an earthquake to look for survivors. The newly created Contextual Robotics Institute will be formally announced on Friday when some of the nation’s top scientists meet at UC San Diego to discuss the future of robotics. The campus has already lined up support from such San Diego companies as Qualcomm, which needs new markets for its computer chips, and Northrop Grumman, which develops unmanned aerial vehicles. “Our plan is to do the research and development that’s needed to realize robots of the future — robots that are safe, useful and autonomous in any environment,” said Albert Pisano, dean of UC San Diego’s Jacobs School of Engineering.   Cont'd...

Batteries for Robotics Applications

Our technologies are designed to fulfill the complex requirements of industrial robotics.

Records 1186 to 1200 of 1960

First | Previous | Next | Last

Industrial Robotics - Featured Product

REIKU's Cable Saver™ - The Most Versatile Modular Robotic Cable Management Solution

REIKU's Cable Saver™ - The Most Versatile Modular Robotic Cable Management Solution

REIKU's Cable Saver™ Solution eliminates downtime, loss of revenue, expensive cable and hose replacement costs, maintenance labor costs. It's available in three sizes 36, 52 and 70 mm. All of the robots cables and hoses are protected when routed through the Cable Saver™ corrugated tubing.The Cable Saver™ uses a spring retraction system housed inside the Energy Tube™ to keep this service loop out of harms way in safe location at the rear of the Robot when not required. The Cable Saver™ is a COMPLETE solution for any make or model of robot. It installs quickly-on either side of the robot and has been tested to resist over 15 million repetitive cycles. REIKU is committed to providing the most modular, effective options for ensuring your robotic components operate without downtime due to cable management. www.CableSaver.com