How Trends in Electronics are Affecting Connectors

New smaller and more portable electronics in aerospace, defense, and other stressful environments, like those encountered in robotics and oil exploration, are resulting in changing demands and designs of electronic connector systems.

DRC SafeStop Case Study

For the Robotics Challenge, to demonstrate the robots ability to operate a vehicle, DARPA chose to use the RANGER XP 900 EPS vehicles, which were all customized for the challenge with a TORC SafeStop Emergency System.

A World Of Hardware Startups

Upverter has a hardware startup master list and world map. Currently contains around 150 robotics companies, 500+ consumer hardware startups and a list of incubators, venture firms and everything else... ( cont'd )

Raspberry Pi Compute Module

From Raspberry Pi Foundation : The compute module contains the guts of a Raspberry Pi (the BCM2835 processor and 512Mbyte of RAM) as well as a 4Gbyte eMMC Flash device (which is the equivalent of the SD card in the Pi). This is all integrated on to a small 67.6x30mm board which fits into a standard DDR2 SODIMM connector (the same type of connector as used for laptop memory*). The Flash memory is connected directly to the processor on the board, but the remaining processor interfaces are available to the user via the connector pins. You get the full flexibility of the BCM2835 SoC (which means that many more GPIOs and interfaces are available as compared to the Raspberry Pi), and designing the module into a custom system should be relatively straightforward as we’ve put all the tricky bits onto the module itself. So what you are seeing here is a Raspberry Pi shrunk down to fit on a SODIMM with onboard memory, whose connectors you can customise for your own needs. The Compute Module is primarily designed for those who are going to create their own PCB. However, we are also launching something called the Compute Module IO Board to help designers get started.

$99 MinnowBoard MAX With Intel Bay Trail-I SoC

From  MinnowBoard : MinnowBoard MAX is another open hardware embedded board we've developed to serve the needs of both the professional developer and hacker/maker community. Based on Intel's new Atom Bay Trail SoC platform, it offers a new generation of performance and features, but remains petite in size and cost. Our entry-level SKU will be $99 MSRP, with additional board configuration options to be made available. All models will include 64-bit processors, USB 3.0, and Intel HD graphics with open source accelerated drivers for Linux, to just name a few of the new features! $99 MSRP: E3815 (single-core, 1.46 GHz), 1GB $129 MSRP: E3825 (dual-core, 1.33 GHz), 2GB HDMI (micro HDMI connector) 1 – Micro SD SDIO 1 – SATA2 3Gb/sec 1 – USB 3.0 (host) 1 – USB 2.0 (host) 1 – Serial debug via FTDI cable (sold separately) 10/100/1000 Ethernet The low-speed expansion port is a 2×13 (26-pin) male 0.1″ pin header. SPI, I2C, I2S Audio, 2x UARTs (TTL-level), 8x GPIO (2x supporting PWM), +5V, GND The high-speed expansion port is a 60-pin, high-density connector. 1x PCIe Gen 2.0 Lane, 1x SATA2 3Gb/sec, 1x USB 2.0 host, I2C, GPIO, JTAG, +5V, GND

AUVSI 2014 Special News Report

This is our special news page where you can read about and post news and announcements about products and services exhibited at AUVSI 2014 Unmanned Systems.

Evolving Soft Robots With Multiple Materials

From Evolving AI Lab: Here we evolve the bodies of soft robots made of multiple materials (muscle, bone, & support tissue) to move quickly. Evolution produces a diverse array of fun, wacky, interesting, but ultimately functional soft robots. Enjoy! ( full paper )

Drones in the Water

Essentially, were creating drones for water that produce mapping capabilities; its somewhat similar to air drones (i.e.: fixed wing UAVs) that map from the sky, but were mapping from the water.

International Paper Saves Labor Costs, Improves Reliability, Quality and Work Flow

Downtime near zero vs. extended downtime of former gantry system.

Beta Testing Dynamixel XL-320 Servos

Dynamixel XL-320 is a digital servo (in this case, featuring a 8-bit STM8 controller).

Flexible Muscle-Based Locomotion for Bipedal Creatures

From John Goatstream's Vimeo Videos: We present a muscle-based control method for simulated bipeds in which both the muscle routing and control parameters are optimized. This yields a generic locomotion control method that supports a variety of bipedal creatures. All actuation forces are the result of 3D simulated muscles, and a model of neural delay is included for all feedback paths. As a result, our controllers generate torque patterns that incorporate biomechanical constraints. The synthesized controllers find different gaits based on target speed, can cope with uneven terrain and external perturbations, and can steer to target directions... ( full paper ) ( follow up videos )

DARPA Begins Phase One of VTOL X-Plane Program

From DARPA : DARPA tasks four companies with designing new aircraft to revolutionize vertical takeoff and landing (VTOL) flight capabilities. For generations, new designs for vertical takeoff and landing aircraft have remained unable to increase top speed without sacrificing range, efficiency or the ability to do useful work. DARPA’s VTOL Experimental Plane (VTOL X-Plane) program seeks to overcome these challenges through innovative cross-pollination between the fixed-wing and rotary-wing worlds, to enable radical improvements in vertical and cruise flight capabilities. In an important step toward that goal, DARPA has awarded prime contracts for Phase 1 of VTOL X-Plane to four companies:  Aurora Flight Sciences Corporation The Boeing Company Karem Aircraft, Inc. Sikorsky Aircraft Corporation “We were looking for different approaches to solve this extremely challenging problem, and we got them,” said Ashish Bagai, DARPA program manager. “The proposals we’ve chosen aim to create new technologies and incorporate existing ones that VTOL designs so far have not succeeded in developing. We’re eager to see if the performers can integrate their ideas into designs that could potentially achieve the performance goals we’ve set.” VTOL X-Plane seeks to develop a technology demonstrator that could: Achieve a top sustained flight speed of 300 kt-400 kt Raise aircraft hover efficiency from 60 percent to at least 75 percent Present a more favorable cruise lift-to-drag ratio of at least 10, up from 5-6 Carry a useful load of at least 40 percent of the vehicle’s projected gross weight of 10,000-12,000 pounds All four winning companies proposed designs for unmanned vehicles, but the technologies that VTOL X-Plane intends to develop could apply equally well to manned aircraft. Another common element among the designs is that they all incorporate multipurpose technologies to varying degrees. Multipurpose technologies decrease the number of systems in a vehicle and its overall mechanical complexity. Multipurpose technologies also use space and weight more efficiently to improve performance and enable new and improved capabilities. The next major milestone for VTOL X-Plane is scheduled for late 2015, when the four performers are required to submit preliminary designs. At that point, DARPA plans to review the designs to decide which to build as a technology demonstrator, with the goal of performing flight tests in the 2017-18 timeframe. 

Soft Robotic Fish

MIT News : Soft robots — which don't just have soft exteriors but are also powered by fluid flowing through flexible channels — have become a sufficiently popular research topic that they now have their own journal, Soft Robotics. In the first issue of that journal, out this month, MIT researchers report the first self-contained autonomous soft robot, a "fish" that can execute an escape maneuver, convulsing its body to change direction, in just 100 milliseconds, or as quickly as a real fish can.

What to Look for When Specifying a Robot Cable

In order for a cable to withstand repeated torsional movement, its necessary for the cable to have a special design. Its important that the conductors, shield construction and jacket materials of the cable compensate for major changes in bending load and diameter.

Robotic Welding Series: Robotic Flexibility Can Open Up Opportunities For Job Shops

This is the final installment of a 4-part series by KC Robotics about the automated arc welding industry.

Records 1501 to 1515 of 1954

First | Previous | Next | Last

Industrial Robotics - Featured Product

Online Master of Engineering in Robotics & Intelligent Autonomous Systems

Online Master of Engineering in Robotics & Intelligent Autonomous Systems

The Robotics and Intelligent Autonomous Systems program at the University of Cincinnati Online offers a cutting-edge curriculum that equips students with the skills to design, develop, and implement advanced robotic systems. Through a combination of theoretical knowledge and top-ranked faculty, students gain expertise in artificial intelligence, machine learning, and robotics, preparing them for impactful careers in the rapidly evolving field of autonomous systems. Explore now!