Amazon patents system to defend drones against hackers, jammers … and arrows

Alan Boyle for GeekWire:  If there are any Robin Hoods out there who are thinking about shooting down drones while they’re making deliveries, Amazon has a patented plan to stop you. The patent, filed in 2014 but published just last week, lays out countermeasures for potential threats ranging from computer hacking to lightning flashes to bows and arrows. If nothing else, the 33-page application illustrates how many things could possibly go wrong with an autonomous navigation system for unmanned aerial vehicles, or UAVs. The “compromise system” that Amazon’s engineers propose relies on an array of sensors to orient the drone based on the sun’s position in the sky, if need be. That’s in case the drone gets confused by, say, lightning or a muzzle flash.   Cont'd.. .

Upcoming Tradeshow, Conference & Exhibition Summary - February - April 2017

Here is a summary of what Tradeshows, Conferences & Exhibitions to look forward to in the coming months.

The Aggressively Flying Quadrotor

Steve Arar for All About Circuits:  Recently, Vijay Kumar’s lab at the University of Pennsylvania in cooperation with researchers from Qualcomm has unveiled a quadrotor which can fly aggressively through a window. You may think that you have seen similar robots before; however, there is a big difference between previously designed robots and this new technology. Generally, to exhibit challenging maneuvers, a quadrotor depends on an array of cameras mounted on the walls and some external processors. The image captured by the cameras is processed and the outcome is delivered to the robot. The computer can issue precise commands and the only thing that the robot needs to do is to follow the orders. However, the new robot performs both the image capturing and processing onboard. The quadrotor carries an IMU, a Qualcomm Snapdragon, and Hexagon DSP. With the onboard sensors and processors, the robot is able to perform localization, state estimation, and path planning autonomously.   Cont'd...

Robotics Veteran Raises Venture Capital to Build Exoskeleton

Alistair Blair for Bloomberg Technology:  The word "robot" conjures images of bulky, metal humanoid objects moving awkwardly. Robotics veteran Rich Mahoney is trying to change that perception by creating a robotic exoskeleton people can wear. After more than seven years running a robotics group at Silicon Valley research institution SRI International, Mahoney left about a year ago to form a startup called Superflex. On Tuesday, the company said it raised $9.6 million from investors including Japanese venture capital group Global Brain and Horizons Ventures, the VC fund of Asian billionaire Li Ka-shing. Superflex is developing a lightweight suit with electric "muscles" that help the elderly and other less-mobile people move around. The system, which will look a bit like a unitard, is designed to provide the wearer with extra strength to get up from a chair or stand for longer. The device has thin actuators built in that use battery power to contract at the same time as people's real muscles.   Cont'd...

LiDAR 101: A Q&A with a Pictometry Expert

Because LiDAR uses light, the target must be visible, so it is not an all-weather solution. It won't work well in fog or other weather conditions that affect visibility, but if conditions are clear, it can operate during both day and night.

An Open Source Driving Agent from comma.ai

From comma.ai:   Last week, we open sourced an advanced driver assistance system in order to help accelerate the future of self driving cars and provide a platform anyone can build on top of. We released both openpilot, driving agent research software, and NEO, a robotics platform capable of running openpilot, under the MIT license.   openpilot is an open source adaptive cruise control and lane keeping assist system, both safety features available on modern cars. We would like to build the best ones on the market, and help you retrofit them to existing cars.   NEO is an open source robotics research platform. It is centered around an Android phone, similar to Android Based Robots. The modern smartphone is an incredible platform packed with sensors and processing power. NEO also includes a cooling solution and a CAN interface board. CAN is a networking protocol used in cars, trucks, power wheelchairs, golf carts, and many other robotics applications.   With a forthcoming openpilot release, it will become easier for researchers to add support for their own vehicle. On older cars, some actuators may be harder to control than others, but it should be very possible to control the gas electronically to have a gas only adaptive cruise control. It's also possible for researchers to add mechanical actuators for the controls that cannot be electronically actuated. Have fun, be safe, and let's usher in the future of self driving cars together... (Github repo) (Interview)

Future Drones Will Fly as Silent as Owls, as Steady as Bees

Glenn McDonald for Seeker:  Want to know what drones of the future will look like? So does David Lentink, editor of Interface Focus, a journal that, as its title suggests, looks at the interface of different scientific disciplines. Each issue zeroes in on a particular intersection of physical sciences and life sciences and invites the world's top scholars to publish their latest work. The latest issue of Interface Focus brings together biologists and engineers to discuss a topic that's relatively straightforward and, well, pretty empirically cool: "It's completely focused on how animals fly and how that can help us build flying robots," said Lentink, assistant professor of mechanical engineering at Stanford.  Can't argue with that. The new issue features 18 newly published papers on various ways that engineers are borrowing ideas from nature to make the next generation of drones and aerial robots. Several of the papers detail prototype drones that have already been built and tested.   Cont'd...

DIY Position Tracking Using HTC Vive's Lighthouse

  From Alexander Shtuchkin: Code & schematics for position tracking sensor using HTC Vive's Lighthouse system and a Teensy board. General purpose indoor positioning sensor, good for robots, drones, etc. 3d position accuracy: currently ~10mm; less than 2mm possible with additional work. Update frequency: 30 Hz Output formats: Text; Mavlink ATT_POS_MOCAP via serial; Ublox GPS emulation (in works) HTC Vive Station visibility requirements: full top hemisphere from sensor. Both stations need to be visible. Positioning volume: same as HTC Vive, approx up to 4x4x3 meters. Cost: ~$10 + Teensy 3.2 ($20) (+ Lighthouse stations (2x $135)) Skills to build: Low complexity soldering; Embedded C++ recommended for integration to your project. (Github page)

Was That an Insect or a Drone?

The insect drone takes on the functions of larger UAVs, but reduces the larger drones down into a miniature undetectable device.

Engineers Devise New Method to Heighten Senses of Soft Robot

Written by AZoRobotics:  Most robots achieve grasping and tactile sensing through motorized means, which can be excessively bulky and rigid. A Cornell group has devised a way for a soft robot to feel its surroundings internally, in much the same way humans do. A group led by Robert Shepherd, assistant professor of mechanical and aerospace engineering and principal investigator of Organic Robotics Lab, has published a paper describing how stretchable optical waveguides act as curvature, elongation and force sensors in a soft robotic hand. Doctoral student Huichan Zhao is lead author of “Optoelectronically Innervated Soft Prosthetic Hand via Stretchable Optical Waveguides,” which is featured in the debut edition of Science Robotics. The paper published Dec. 6; also contributing were doctoral students Kevin O’Brien and Shuo Li, both of Shepherd’s lab.   Cont'd.. .

Autopilot vs. Autonomous

A fully autonomous automobile is able to decide whether it can safely enter an intersection. It is able to decide how to maneuver around other vehicles, people, and other moving objects.

MIT's Modular Robotic Chain Is Whatever You Want It to Be

Evan Ackerman for IEEE Spectrum:  As sensors, computers, actuators, and batteries decrease in size and increase in efficiency, it becomes possible to make robots much smaller without sacrificing a whole lot of capability. There’s a lower limit on usefulness, however, if you’re making a robot that needs to interact with humans or human-scale objects. You can continue to leverage shrinking components if you make robots that are modular: in other words, big robots that are made up of lots of little robots. In some ways, it’s more complicated to do this, because if one robot is complicated, robots tend to be complicated. If you can get all of the communication and coordination figured out, though, a modular system offers tons of advantages: robots that come in any size you want, any configuration you want, and that are exceptionally easy to repair and reconfigure on the fly. MIT’s ChainFORM is an interesting take on this idea: it’s an evolution of last year’s LineFORM multifunctional snake robot that introduces modularity to the system, letting you tear of a strip of exactly how much robot you need, and then reconfigure it to do all kinds of things.   Cont'd...

Boeing buys Liquid Robotics to boost autonomous surveillance at sea

Alan Boyle for Geekwire:  The Boeing Co. says it has agreed to acquire Liquid Robotics, its teammate in a years-long effort to create surfboard-sized robots that can use wave power to roam the seas. The acquisition is expected to help Boeing create military communication networks that can transmit information autonomously from the sea to satellites via Sensor Hosting Autonomous Remote Craft, or SHARCs. Liquid Robotics was founded in 2007 and currently has about 100 employees in California and Hawaii. Once the deal is completed, the company will become a subsidiary of Boeing. The arrangement is similar to the one that applies to Insitu, a Boeing subsidiary that is headquartered in Bingen, Wash., and manufactures ScanEagle military-grade drones.   Cont'd...  

Going Where No Man Has Gone Before: What Does the Future Hold for Automation in the Service Industry?

Most service organisations are still at the stage of small scale trial RPA deployments summarised as "if x is true, then click button y". So how do we go on our voyage of discovery, and move from where we are now to a more automated enterprise?

Stanford study concludes next generation of robots won't try to kill us

Bruce Brown for DigitalTrends:  It sounds like we can all take a breath and forget about robot attacks occurring — at least anytime soon. Robots turning against their makers is a common theme in science fiction. However, there’s “no cause for concern that AI poses an imminent threat to humanity,” according to Fast Company, citing the first report from the One Hundred Year Study on Artificial Intelligence (AI100). The Stanford University-hosted project represents a standing committee of AI scientists. The AI100 project is ongoing but will not issue reports annually — the next one will be published “in a few years.” The first report, Artificial Intelligence and Life in 2030, downloadable at this link, looks at how advances in AI will make a difference in the U.S. between now and 2030. Areas of change explored by the report include transportation, healthcare, education, the workplace, and policing and public safety.  Cont'd...

Records 286 to 300 of 608

First | Previous | Next | Last

Featured Product

QC Industries - AS40: The Ultimate User-Friendly Conveyor

QC Industries - AS40: The Ultimate User-Friendly Conveyor

AS40 Conveyors are designed for ease of use and simple integration with robotic applications. Built on a rigid aluminum frame, they feature tee slots for rapid accessory mounting and a tail that flips up at the push of a button for easy under-belt cleaning and belt changes. Nosebar tails are available for transferring small parts between conveyors. All conveyors include a 10 Year Warranty and most are available with a fast five day lead time.