Intro to Shape Memory Alloy Actuation Using Flexinol

From Jie Qi's projects page: Shape memory alloys (SMAs) are metals that change shape when heated up. They are wonderful actuators in that they are light, silent and can be "turned on" by simply running current through. The shape that they change to can also be set, though this process is a bit more tricky. Flexinol is a particular brand of nitinol, which is an SMA made of nickel and titanium, and is pre-set to contract about 10% of its original length when heated. In my projects, I generally used the 0.006" to 0.01" diameter, High-Temp wires. Since Flexinol draws a lot of current (about 300mA for the diameters I used), you need a strong power supply like a wall supply or a good lithium-ion battery. I've used from 3.7V up to 6V (any more and my Flexinol wires would start overheating). To turn the Flexinol on, I would simply short the ends of the wire to the power. For digital control, I used a standard MOSFET circuit which is a digital switch that can be turned on and off using a microcontroller... ( cont'd )

BugJuggler: Project to build 70ft tall robot that juggles cars

Project Overview: BugJuggler will use a diesel engine to generate hydraulic pressure. An operator located in the robot’s head will be able to control its motions using a haptic feedback interface connected to high-speed servo valves. Hydraulic accumulators - essentially storage batteries for hydraulic fluid - will allow for the rapid movement required for the robot to juggle cars or other large, heavy objects.  The first stage of the BugJuggler project will be construction of a working 8ft tall single arm proof-of-principle juggler able to toss and catch a 250lb mass... ( cont'd )

Intel's 3-D Printed Robot "Jimmy"

From Wired: Intel describes Jimmy as a research robot, but a less sophisticated version of the adorable droid will go on sale later this year for $1,600. The caveat is that you will have to 3D print your Jimmy. The 3D printing blueprints will be available without charge, but to construct the robot you will also need to purchase a kit from Intel that will contain all the parts of Jimmy that aren't printable, including motors and an Intel Edison processor.. ( cont'd )

Open-source 3D Printed Life-size Robot

From InMoov's homepage: Gael Langevin is a French modelmaker and sculptor. He works for the biggest brands since more than 25 years. InMoov is his personal project, it was initiated in January 2012 InMoov is the first Open Source 3D printed life-size robot. Replicable on any home 3D printer with a 12x12x12cm area, it is conceived as a development platform for Universities, Laboratories, Hobbyist, but first of all for Makers. It’s concept, based on sharing and community, gives him the honor to be reproduced for countless projects through out the world... ( cont'd )

3D Video Capture With Three Kinects

From Video from a capture space consisting of one Oculus Rift head-mounted display and three Kinect 3D cameras set up in an equilateral triangle, with each Kinect approximately 2m from the center point. The resulting 3D video data is merged with a virtual 3D model of an office environment... (cont'd)

faBrickation: Fast 3D Printing Using Bricks

Hasso-Plattner-Institut : faBrickation is a new approach to rapid prototyping of functional objects, such as the body of a head-mounted display. The key idea is to save 3D printing time by automatically substituting sub-volumes with standard building blocks — in our case Lego bricks. When making the body for a head-mounted display, for example, getting the optical path right is paramount. Users thus mark the lens mounts as “high-resolution” to indicate that these should later be 3D printed. faBrickator then 3D prints these parts. It also generates instructions that show users how to create everything else from Lego bricks.

The Factory-in-a-Day Project

From  Factory-in-a-Day's page : Small and medium-sized enterprises in Europe mostly refrain from using advanced robot technology. The EU-project Factory-in-a-Day aims to change this by developing a robotic system that can be set up and made operational in 24 hours and is flexible, leasable and cheap. The project has a budget of 11 million euros for four years, 7.9 million of which will be funded by the European Union as part of the FP7 programme ‘Factory of the Future’. The international consortium comprises 16 partners and the coordinating university is Delft University of Technology (TU Delft). The project will start on 8 October 2013 with a formal kick- off meeting in Delft. Within 24 hours The Factory-in-a-Day-project will provide a solution to these problems: a robot that can be set up and operational in 24 hours. SME companies can use the robot for a specific job and their staff can learn how to work closely together with the robot and thus optimize their production. “With the technological and organizational innovations of the Factory-in-a-Day project, we hope to fundamentally change the ways in which robots are used in the manufacturing world”, says project coordinator Martijn Wisse, Associate Professor at TU Delft. How does it work? What will such an installation day look like? First of all, before the robot is actually taken to the SME premises, a system integrator analyzes which steps in the process can be taken over by the robot. In most cases the repetitive work is done by the robot while the human worker carries out the more flexible, accurate tasks and deals with problem- solving. Customer-specific hardware-components are 3D-printed and installed on the grippers of the robot. The robot is then brought to the factory and set up, and any auxiliary components such as cameras are also set up in the unaltered production facilities. The robot will be connected to the machinery software through a brand-independent software system. After that, the robot is taught how to perform his set of tasks, for example how to grasp an object. Therefore, the operator will physically interact with the robot. A set of predefined skills will be available, rather like Apps for smart phones. Finally, the robot is operational and the human co-workers receive their training -- all in just 24 hours.

3D Home Printer From 3D@Home

The consumer electronics show CES is this week so we are probably going to see a couple new 3D printers announced. MakerBot has been teasing a new version of their Thing-O-Matic and today 3D@Home announced their Cube printer. The printer will cost $1,299 and print standard .STL files to print out ABS plastic models. 3D@Home also plans to offer a print on demand service for larger models.

Records 346 to 353 of 353

First | Previous

Featured Product

BLE2 Series Brushless Motor & Driver

BLE2 Series Brushless Motor & Driver

The BLE2 Series replaces our popular BLE Series and continues our brushless motor advantages by featuring an all new compact, high-power and high-efficiency brushless DC motor combined with a Driver that can be digitally set and controlled via external DC voltage or by the front panel. The BLE2 Series can easily compete with larger 3-phase inverter driven motors in many more applications, with built-in simple holding torque function, saving space and increasing performance thanks to the advantages of a brushless motor design. The BLE2 Series has a maximum speed of 4000 r/min, achieving a speed ratio of 1:50 (80 to 4000 r/min). The new motor structure is small than previous models and enables high power and high efficiency while incorporating easy setting, installation and wiring. The new motor connector offers IP66 degree of protection and allows for easy and direct connection between motor and driver with two available orientation of cable outlet direction. Standardized use of stain