The Emergence and Implications of Nanomanufacturing

Obviously, nanomanufacturing will require new kinds of skills that are needed for these high-tech manufacturing jobs, which require specialized education, such as powder processing and metallurgy extraction.

Open-source 3D Printed Life-size Robot

From InMoov's homepage: Gael Langevin is a French modelmaker and sculptor. He works for the biggest brands since more than 25 years. InMoov is his personal project, it was initiated in January 2012 InMoov is the first Open Source 3D printed life-size robot. Replicable on any home 3D printer with a 12x12x12cm area, it is conceived as a development platform for Universities, Laboratories, Hobbyist, but first of all for Makers. It’s concept, based on sharing and community, gives him the honor to be reproduced for countless projects through out the world... ( cont'd )

3D Video Capture With Three Kinects

From Doc-Ok.org: Video from a capture space consisting of one Oculus Rift head-mounted display and three Kinect 3D cameras set up in an equilateral triangle, with each Kinect approximately 2m from the center point. The resulting 3D video data is merged with a virtual 3D model of an office environment... (cont'd)

What is Rapid Prototyping?

Whether a robot is needed to prototype a part or a robot is the object being prototyped, Rapid Prototyping is the future.

Design With Touchless Rotary Sensors

Touchless rotary sensors are position sensors that use a position marker attached to an application's rotating part plus a sensor to measure the marker's angle.

Graphene - The New Magical Material

Graphene may possibly be the future replacement for silicone. It's a two-dimensional material that measures just one atom thick and has a breaking strength 300 times greater than steel.

Additive Manufacturing and 3D Printing The Future of Manufacturing

The next chapter in the industrial revolution is 3D printing, delivering a huge impact on additive manufacturing. It will not only create thousands of new jobs, but it will create many new businesses.

2013 Nanotechnology Patent Literature Review

Similar to computers, nanotechnology is both an enabling technology and a technology sector in its own right. Nanotechnology is prolific in the research and development of almost every economic sector, from aerospace to medicine to energy.

3D Printing in the Dental Industry

3Shape implants planning and guided surgery software brings together implant planning, prosthetics, and drill guide design to provide a cost-efficient solution that saves chair-time and improves patient experience.

An Uncertain Future for Quantum Computing?

Quantum computing is here to shake the existing mechanical, electrical and electronic systems. Modern electronics in particular will not be the same if quantum computing gains acceptance. There're voices of support as well as dissent. In this post, we'll analyze future trends in quantum computing. Keep reading!

Electrospinning NanoFibers

Electrospinning can be used to produce advanced materials that otherwise would not be possible to make.

Case Study: Customizing Orthopedics With Robotics

The mastery we developed of ROBOTMASTER's capabilities, combined with our expertise in orthoses and prostheses, permitted us to develop proprietary, patented milling strategies, conceived specifically for, and ideally suited to, our highly specialised business.

faBrickation: Fast 3D Printing Using Bricks

Hasso-Plattner-Institut : faBrickation is a new approach to rapid prototyping of functional objects, such as the body of a head-mounted display. The key idea is to save 3D printing time by automatically substituting sub-volumes with standard building blocks — in our case Lego bricks. When making the body for a head-mounted display, for example, getting the optical path right is paramount. Users thus mark the lens mounts as “high-resolution” to indicate that these should later be 3D printed. faBrickator then 3D prints these parts. It also generates instructions that show users how to create everything else from Lego bricks.

How Small Can You Go?

Nanorobotics is about creating robots which are so small they are nearly invisible to the naked eye. Operating as a swarm, these tiny robots have the promise to do some really incredible things.

The Factory-in-a-Day Project

From  Factory-in-a-Day's page : Small and medium-sized enterprises in Europe mostly refrain from using advanced robot technology. The EU-project Factory-in-a-Day aims to change this by developing a robotic system that can be set up and made operational in 24 hours and is flexible, leasable and cheap. The project has a budget of 11 million euros for four years, 7.9 million of which will be funded by the European Union as part of the FP7 programme ‘Factory of the Future’. The international consortium comprises 16 partners and the coordinating university is Delft University of Technology (TU Delft). The project will start on 8 October 2013 with a formal kick- off meeting in Delft. Within 24 hours The Factory-in-a-Day-project will provide a solution to these problems: a robot that can be set up and operational in 24 hours. SME companies can use the robot for a specific job and their staff can learn how to work closely together with the robot and thus optimize their production. “With the technological and organizational innovations of the Factory-in-a-Day project, we hope to fundamentally change the ways in which robots are used in the manufacturing world”, says project coordinator Martijn Wisse, Associate Professor at TU Delft. How does it work? What will such an installation day look like? First of all, before the robot is actually taken to the SME premises, a system integrator analyzes which steps in the process can be taken over by the robot. In most cases the repetitive work is done by the robot while the human worker carries out the more flexible, accurate tasks and deals with problem- solving. Customer-specific hardware-components are 3D-printed and installed on the grippers of the robot. The robot is then brought to the factory and set up, and any auxiliary components such as cameras are also set up in the unaltered production facilities. The robot will be connected to the machinery software through a brand-independent software system. After that, the robot is taught how to perform his set of tasks, for example how to grasp an object. Therefore, the operator will physically interact with the robot. A set of predefined skills will be available, rather like Apps for smart phones. Finally, the robot is operational and the human co-workers receive their training -- all in just 24 hours.

Records 616 to 630 of 636

First | Previous | Next | Last

Personal & Service Robots - Featured Product

Swift Naviagtion - Ruggedized Robustness for Robotic Applications

Swift Naviagtion - Ruggedized Robustness for Robotic Applications

Duro® is a ruggedized version of Swift Navigation's Piksi® Multi RTK GNSS receiver. Built to be tough, Duro is designed for easy integration into existing equipment. This affordable, easy-to-deploy GNSS sensor delivers robust, centimeter-accurate positioning while protected against weather, moisture, vibration, dust, water immersion and the unexpected that can occur in outdoor long-term deployments.