Autonomous Drifting

From AMREL:

You know how the stuntmen make fast cars drift in action movies? Have you ever wanted to make a remote-controlled toy car drift like that? Of course you have.  If there ever were awards for endeavors that sound silly, but is actually technically interesting, then the folks at MIT’s Aerospace Controls Lab would surely be nominated.

Unmanned systems are rarely fully autonomous.  Instead, researchers are pursuing “sliding” autonomy, i.e. an operator retains control, while some behaviors are made autonomous. Aerospace Controls Lab decided to teach a remote-control toy car how to autonomously drift.

They started by running their learning algorithm through simulations.  Information from these simulations was transferred to performance modifiers. When the car was run through its drifting actions in reality, the algorithm was constantly modified. The result is a car that can maintain drifting in a full circle even when salt is added to the floor, or another vehicle interferes with it.

 

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Stäubli – Robotic tool changers

Stäubli - Robotic tool changers

Stäubli offers a complete range of robotic tool changing systems for payloads of 20 kg to 1,530 kg and torsion moments from 30 to 12,500 Nm, designed for use in virtually every industry. The tool changers adapt to customer-specific applications with different modules for media, data, power, etc. The new MPS 130 robotic tool changer is powerful, very robust, and designed for a huge range of applications. It features multiple couplings for air/vacuum connections, and can be equipped with connectors for data and electrical transmission. Very compact dimensions, with a coupled height of only 67 mm, make the MPS 130 the first choice for applications requiring a high number of mating cycles.