DARPAs FLA program aims to create unmanned nano robot like insects & birds that can go into buildings & perform key activities that will not be possible by Humans.

3 Micro Drones & Robot Swarms Initiatives Backed by the US Military

Contributed by | Zimlon

 

DARPA’s Fast Lightweight Autonomy Program

DARPA’s FLA program aims to create unmanned nano robot like insects & birds that can go into buildings & perform key activities that will not be possible by Humans.  CNN has some more details on the program.

The Defense Advanced Research Projects Agency (DARPA) -- already famous as the maker of some of the U.S. military's more far-fetched war robots -- aims to develop autonomous drones small enough to fit through an open window. Speeding through unstable buildings or threatening indoor spaces at 20 meters per second, the unmanned aerial vehicle would obviate the need for physical entry that puts troops or civilian response teams at risk. Part of a military brief called the Fast Lightweight Autonomy program, the study is looking at developing new algorithms to allow a small UAV operating without a remote pilot and without use of GPS waypoints to navigate stairways, corridors and other obstacles.

"Birds of prey and flying insects exhibit the kinds of capabilities we want for small UAVs," said Mark Micire, DARPA's Program Manager. "Goshawks, for example, can fly very fast through a dense forest without smacking into a tree.

"Many insects, too, can dart and hover with incredible speed and precision.

 

Low-Cost UAV Swarming Technology (LOCUST) by Office of Naval Research (ONR)

The ONR’s LOCUST program demonstrated 30 rapidly launched autonomous swarming UAVs in early 2015. The release from the ONR has more details:

The LOCUST program includes a tube-based launcher that can send UAVs into the air in rapid succession. The breakthrough technology then utilizes information-sharing between the UAVs, enabling autonomous collaborative behavior in either defensive or offensive missions.

Since the launcher and the UAVs themselves have a small footprint, the technology enables swarms of compact UAVs to take off from ships, tactical vehicles, aircraft or other unmanned platforms.  

The ONR demonstrations, which took place over the last month in multiple locations, included the launch of Coyote UAVs capable of carrying varying payloads for different missions. Another technology demonstration of nine UAVs accomplished completely autonomous UAV synchronization and formation flight.

 

General Robotics, Automation, Sensing and Perception (GRASP) Laboratory at the University of Pennsylvania

The GRASP laboratory is backed by a $5M grant from the department of defense to study warming groups of networked autonomous robots. The Army Research lab also funded Prof. Vijay Kumar for another $22M to study micro drone projects. The LAB also produced a nanoquadrotor called the “Hummingbird” which is controlled by software algorithms and not by humans.

 

About Zimlon:

Zimlon integrates crowd sourced research to provide unique insights. 

The content & opinions in this article are the author’s and do not necessarily represent the views of RoboticsTomorrow

Featured Product

3D Vision: Ensenso B now also available as a mono version!

3D Vision: Ensenso B now also available as a mono version!

This compact 3D camera series combines a very short working distance, a large field of view and a high depth of field - perfect for bin picking applications. With its ability to capture multiple objects over a large area, it can help robots empty containers more efficiently. Now available from IDS Imaging Development Systems. In the color version of the Ensenso B, the stereo system is equipped with two RGB image sensors. This saves additional sensors and reduces installation space and hardware costs. Now, you can also choose your model to be equipped with two 5 MP mono sensors, achieving impressively high spatial precision. With enhanced sharpness and accuracy, you can tackle applications where absolute precision is essential. The great strength of the Ensenso B lies in the very precise detection of objects at close range. It offers a wide field of view and an impressively high depth of field. This means that the area in which an object is in focus is unusually large. At a distance of 30 centimetres between the camera and the object, the Z-accuracy is approx. 0.1 millimetres. The maximum working distance is 2 meters. This 3D camera series complies with protection class IP65/67 and is ideal for use in industrial environments.