Robonaut 2 Gets Legs


NASA engineers are developing climbing legs for the International Space Station's robotic crew member Robonaut 2 (R2), marking another milestone in space humanoid robotics.

The legless R2, currently attached to a support post, is undergoing experimental trials with astronauts aboard the orbiting laboratory. Since its arrival at the station in February 2011, R2 has performed a series of tasks to demonstrate its functionality in microgravity.

These new legs, funded by NASA's Human Exploration and Operations and Space Technology mission directorates, will provide R2 the mobility it needs to help with regular and repetitive tasks inside and outside the space station. The goal is to free up the crew for more critical work, including scientific research.


Parrot Announces MiniDrone And Jumping Sumo At CES

From Parrot:

Rex: A Single-board Computer With A Full OS That Is Designed For Robots

From the Rex Kickstarter:

Why do you want Rex?

There are two general classes of electronics used in robot hardware: microcontrollers (ex. Arduino) and single-board computers. Microcontrollers are great for projects that only require a single program to be run, quickly and without overhead, like controlling LEDs and motors. Single-board computers are great for anything you'd need a cheap, small computer for - like networking applications and image processing.

Advanced autonomous robots require the strengths of both. A system developed around Rex, being made specifically for robots, brings it all together in one nice little package in a way that has never been done before.

Hardware Specs:

  • Texas Instruments DM3730
  • 1GHz 32-bit ARM Cortex-A8 Processor core
  • 800MHz DSP core
  • USB Host port
  • MicroSD slot
  • Camera Module port
  • 3.5mm Audio-in jack
  • 3.5mm Audio-out jack
  • 5V DC input for desktop development

Each Rex will come pre-installed with Alphalem OS, a FOSS custom linux distribution. It includes a core set of built-in device drivers - ones that we've hand-picked as being the most useful for robots (like USB WiFi adapters and cameras). We'll publish the list in a wiki on our website.

Here are the other main features:

  • An Arduino-style programming environment with support for multiple programming languages (C, C++, Python).
  • A special task manager called the Master Control Program (MCP).
  • An API for message passing in multi-process applications.
  • A standard Linux filesystem which will allow you to install just about any Linux software that can be cross-compiled for ARM.
  • Libraries for common processes such as I2C communication, face detection, and sensor reading.

DARPA Robotics Challenge Trials Live Broadcast

The DRC Trials are happening today and tomorrow (December 20-21, 2013) at the Homestead-Miami Speedway. Teams will attempt to guide their robots through eight individual, physical tasks that test mobility, manipulation, dexterity, perception, and operator control mechanisms;

You can watch the live stream here.

The Factory-in-a-Day Project

From Factory-in-a-Day's page:

Small and medium-sized enterprises in Europe mostly refrain from using advanced robot technology. The EU-project Factory-in-a-Day aims to change this by developing a robotic system that can be set up and made operational in 24 hours and is flexible, leasable and cheap. The project has a budget of 11 million euros for four years, 7.9 million of which will be funded by the European Union as part of the FP7 programme ‘Factory of the Future’. The international consortium comprises 16 partners and the coordinating university is Delft University of Technology (TU Delft). The project will start on 8 October 2013 with a formal kick- off meeting in Delft.

Within 24 hours

The Factory-in-a-Day-project will provide a solution to these problems: a robot that can be set up and operational in 24 hours. SME companies can use the robot for a specific job and their staff can learn how to work closely together with the robot and thus optimize their production. “With the technological and organizational innovations of the Factory-in-a-Day project, we hope to fundamentally change the ways in which robots are used in the manufacturing world”, says project coordinator Martijn Wisse, Associate Professor at TU Delft. How does it work?

What will such an installation day look like? First of all, before the robot is actually taken to the SME premises, a system integrator analyzes which steps in the process can be taken over by the robot. In most cases the repetitive work is done by the robot while the human worker carries out the more flexible, accurate tasks and deals with problem- solving.

Customer-specific hardware-components are 3D-printed and installed on the grippers of the robot. The robot is then brought to the factory and set up, and any auxiliary components such as cameras are also set up in the unaltered production facilities. The robot will be connected to the machinery software through a brand-independent software system. After that, the robot is taught how to perform his set of tasks, for example how to grasp an object. Therefore, the operator will physically interact with the robot. A set of predefined skills will be available, rather like Apps for smart phones. Finally, the robot is operational and the human co-workers receive their training -- all in just 24 hours.

Google Puts Money on Robots, Using the Man Behind Android

New York Times:

Over the last half-year, Google has quietly acquired seven technology companies in an effort to create a new generation of robots. And the engineer heading the effort is Andy Rubin, the man who built Google’s Android software into the world’s dominant force in smartphones.... (full article)

Dynamic Probabilistic Volumetric Models

From Ali Osman Ulusoy, Octavian Biris, Joseph Mundy of Brown University:

This paper presents a probabilistic volumetric frame- work for image based modeling of general dynamic 3-d scenes. The framework is targeted towards high quality modeling of complex scenes evolving over thousands of frames. Extensive storage and computational resources are required in processing large scale space-time (4-d) data. Existing methods typically store separate 3-d models at each time step and do not address such limitations. A novel 4-d representation is proposed that adaptively subdivides in space and time to explain the appearance of 3-d dynamic surfaces. This representation is shown to achieve compres- sion of 4-d data and provide efficient spatio-temporal pro- cessing. Theadvancesoftheproposedframeworkisdemon- strated on standard datasets using free-viewpoint video and 3-d tracking applications.... (full paper)

Trainable Arduiono Arm

From Navic209's youtube channel:
Inspired by the Baxter robot, this arm can be trained to move with your own hands. Once the train button is pressed, you move the arm and gripper as needed while the Arduino stores the positions in EEPROM. After that the arm will replay the motion as needed.


Youtube channel
Source on Github
Additional projects

PrimeSense Reportedly Aquired By Apple

According to AllThingsD Apple is in the process of buying PrimeSense. PrimeSense is the company that developed and licensed the hardware and chip design used in the original Kinect. This could have an effect on several low cost depth cameras including the ASUS Xtion which uses PrimeSense hardware or the $200 developer camera sold directly from PrimeSense.

Their online store is still open but who know for how long.


IEEE Spectrum:

As cool as quadrotors are, in most cases they're simply not as good as helicopters. Because of the way they're designed (with four small rotors instead of one big one), they're less powerful, less efficient, and less maneuverable. The power and efficiency issues come from the fact that one big rotor generates more lift per aircraft footprint than four small rotors, and as for maneuverability, a helicopter that can alter rotor pitch instantly will always outmaneuver a quadrotor that can only control blade speed. Seriously, try doing this with a quadrotor.

So, the thing that quadrotors have going for them is that they're simple. Helicopters have complex main rotor heads, with shafts and bearings and linkages all over the place, while quadrotors just have four motors and that's it. The University of Queensland researchers came up with a "Y4" configuration that aims to take all the good bits of helicopters and make them as simple as quadrotors. I'm just going to start calling this new design a triquad. Keep in mind that this is still a quadrotor: it just had things shifted around a little bit.

Almost all of the triquad's lift comes from its big main fixed-pitch rotor, located at the center of the "Y" (pictured below). The three little fixed-pitch rotors in the "Y" configuration are angled (at a fixed 45 degrees) to provide counter-torque (which they do slightly more efficiently than a helicopter tail rotor) along with pitch and roll control. Here's how the control works... cont'd at IEEE Spectrum

Follow up discussions:

  1. DIY Drones post and discussion.
  2. Hackernews post.

Complete videos from the IROS 2013 workshop: "Understanding Robotics and Public Opinion Workshop From IROS 2013" article with all videos or straight youtube playlist link.



littleBits makes an opensource library of electronic modules that snap together with tiny magnets for prototyping, learning, and fun.

What is littleBits? from littleBits on Vimeo.

New Video of ACM-R5H Snake Robot


The new ACM-R5H swimming in a new pool. It is fully customizable in its colors (fins and body) and in the electronics that may be fitted in the front and rear unit.
The robot length can be also easily changed by adding or removing units, in this case it is a version of 6 active joints.

Fuelmatics Automatic Refueling System

S4A: Scratch modification for Arduino


Scratch for Arduino (S4A) is a modified version of Scratch, ready to interact with Arduino boards.

Supported boards
S4A works with Arduino Diecimila, Duemilanove and Uno. Other boards haven't been tested, but they may also work.

Components have to be connected in a particular way. S4A allows for 6 analog inputs (analog pins), 2 digital inputs (digital pins 2 and 3), 3 analog outputs (digital pins 5, 6 and 9), 3 digital outputs (pins 10, 11 and 13) and 4 special outputs to connect Parallax continuous rotation servomotors (digital pins 4, 7, 8 and 12).

You can manage a board wirelessly by attaching an RF module to it, such as Xbee.

S4A allows you to control as many boards as USB ports you have.

S4A is backwards compatible with Scratch, so you can open Scratch projects in it. However, you won't be able to share your projects on the Scratch community website because doing so goes against the Scratch terms of use.

Take in account that this compatibility doesn't work both ways, so you won't be able to open an S4A project from within the original Scratch.

Using a PicoBoard along with an Arduino board is also supported... cont'd

Records 376 to 390 of 612

First | Previous | Next | Last

Featured Product

Oriental Motor - 2-Phase Bipolar Stepper Motor Drivers (1.8°/0.9°)

Oriental Motor - 2-Phase Bipolar Stepper Motor Drivers (1.8°/0.9°)

The CVD driver offers superior performance and value and is ideal for OEM or single axis machines. The CVD is available as a driver only or part of a complete package. The CVD series stepper motor drivers offer: Lowest Vibration and Noise with advanced Microstepping control / Highest torque with Bipolar configuration (4 lead wire) / Small, thin microstepping drive with space saving FETs / Selectable step angle and microstepping filter control / 2 mounting types and connector configurations / Alarms / 24 VDC Input / 0.5A to 4.5A