Mobile Robotic Fabrication System for Filament Structures

From Maria Yablonina at ITECH:

The project Mobile Robotic Fabrication System for Filament Structures, demonstrates a new production process for filament structures. It proposes multiple semi-autonomous wall climbing robots to distribute fiber filament, using any horizontal or vertical surface, or even existing architecture, to support the new structures. Compared to larger scale industrial robots that are limited by position and reach, these robots are enabled with movement systems and a collection of sensors that allow them to travel and interact accurately along typical ground, walls, roofs, and ceilings. One can imagine a fabrication process where an operator arrives to the scene with a suitcase housing all the necessary robots and materials to create a large structure. These agile mobile robotic systems move robotic fabrication processes beyond the constraints of the production hall, exposing vast urban and interior environments as potential fabrication sites... (site)

Frankenimage

From David Stolarsky:

The goal of Frankenimage is to reconstruct input (target) images with pieces of images from a large image database (the database images).

Frankenimage is deliberately in contrast with traditional photomosaics. In traditional photomosaics, more often than not, the database images that are composed together to make up the target image are so small as to be little more than glorified pixels. Frankenimage aims instead for component database images to be as large as possible in the final composition, taking advantage of structure in each database image, instead of just its average color. In this way, database images retain their own meaning, allowing for real artistic juxtaposition to be achieved between target and component images... (full description and pseudo code)

Records 1 to 2 of 2

Featured Product

Universal Robots - Collaborative Robot Solutions

Universal Robots - Collaborative Robot Solutions

Universal Robots is a result of many years of intensive research in robotics. The product portfolio includes the UR5 and UR10 models that handle payloads of up to 11.3 lbs. and 22.6 lbs. respectively. The six-axis robot arms weigh as little as 40 lbs. with reach capabilities of up to 51 inches. Repeatability of +/- .004" allows quick precision handling of even microscopically small parts. After initial risk assessment, the collaborative Universal Robots can operate alongside human operators without cumbersome and expensive safety guarding. This makes it simple and easy to move the light-weight robot around the production, addressing the needs of agile manufacturing even within small- and medium sized companies regarding automation as costly and complex. If the robots come into contact with an employee, the built-in force control limits the forces at contact, adhering to the current safety requirements on force and torque limitations. Intuitively programmed by non-technical users, the robot arms go from box to operation in less than an hour, and typically pay for themselves within 195 days. Since the first UR robot entered the market in 2009, the company has seen substantial growth with the robotic arms now being sold in more than 50 countries worldwide.