DARPA Trials 2013

The two day DARPA Robotics Challenge Trials 2013 officially ended Saturday, December 21 and here are the results.

Integrated Force Control

A force‐controlled robot can be programmed to mimic the movements of a human arm, applying search patterns to find the correct position to assemble a given part.

DARPA Robotics Challenge Trials Live Broadcast

The DRC Trials are happening today and tomorrow (December 20-21, 2013) at the Homestead-Miami Speedway. Teams will attempt to guide their robots through eight individual, physical tasks that test mobility, manipulation, dexterity, perception, and operator control mechanisms; You can watch the live stream here.

The Factory-in-a-Day Project

From  Factory-in-a-Day's page : Small and medium-sized enterprises in Europe mostly refrain from using advanced robot technology. The EU-project Factory-in-a-Day aims to change this by developing a robotic system that can be set up and made operational in 24 hours and is flexible, leasable and cheap. The project has a budget of 11 million euros for four years, 7.9 million of which will be funded by the European Union as part of the FP7 programme ‘Factory of the Future’. The international consortium comprises 16 partners and the coordinating university is Delft University of Technology (TU Delft). The project will start on 8 October 2013 with a formal kick- off meeting in Delft. Within 24 hours The Factory-in-a-Day-project will provide a solution to these problems: a robot that can be set up and operational in 24 hours. SME companies can use the robot for a specific job and their staff can learn how to work closely together with the robot and thus optimize their production. “With the technological and organizational innovations of the Factory-in-a-Day project, we hope to fundamentally change the ways in which robots are used in the manufacturing world”, says project coordinator Martijn Wisse, Associate Professor at TU Delft. How does it work? What will such an installation day look like? First of all, before the robot is actually taken to the SME premises, a system integrator analyzes which steps in the process can be taken over by the robot. In most cases the repetitive work is done by the robot while the human worker carries out the more flexible, accurate tasks and deals with problem- solving. Customer-specific hardware-components are 3D-printed and installed on the grippers of the robot. The robot is then brought to the factory and set up, and any auxiliary components such as cameras are also set up in the unaltered production facilities. The robot will be connected to the machinery software through a brand-independent software system. After that, the robot is taught how to perform his set of tasks, for example how to grasp an object. Therefore, the operator will physically interact with the robot. A set of predefined skills will be available, rather like Apps for smart phones. Finally, the robot is operational and the human co-workers receive their training -- all in just 24 hours.

Robo-Stox: Investing in the Robotics Revolution

"I've worked a long time to make this happen and am very pleased with the results. It enables investors everywhere to capitalize on the accelerating growth and promising future of robotics." Frank Tobe, Co-founder, Robo-stox LLC and Editor/Publisher, The Robot Report.

Using Drones To Prevent Animal Poaching

These drones are solely surveyors. They must be well equipped to notice when something is out of place or detect potential threats and weapons and alert park rangers immediately.

Robotic Welding Series: Alleviate Skilled Welder Shortages With Robotic Welding Cells

A robot system, fully deployed is going to give two to three-hundred percent return on investment per year.

Google Puts Money on Robots, Using the Man Behind Android

New York Times: Over the last half-year, Google has quietly acquired seven technology companies in an effort to create a new generation of robots. And the engineer heading the effort is Andy Rubin, the man who built Google’s Android software into the world’s dominant force in smartphones.... ( full article )

Using Robots to Clean Oil Spills

As this technology is still in its infant stages, we do not truly know how efficient the process will be. We can only hope that the technology will be there when the next spill happens.

ABB Robotics' Introduces 7th Generation IRB 6700 Family Of Large Robots

ABB Robotics has introduced the IRB 6700 robot family, its seventh generation of industry-leading, large industrial robots.

Hunters: A Good Patent is Good, a Great Lawyer is Even Better

There has to be some way to separate the wheat from the chaff, the frivilous/worthless lawsuits from the honest patents based on hard, sweaty creative efforts that deserve protection.

Dynamic Probabilistic Volumetric Models

From Ali Osman Ulusoy, Octavian Biris, Joseph Mundy of Brown University: This paper presents a probabilistic volumetric frame- work for image based modeling of general dynamic 3-d scenes. The framework is targeted towards high quality modeling of complex scenes evolving over thousands of frames. Extensive storage and computational resources are required in processing large scale space-time (4-d) data. Existing methods typically store separate 3-d models at each time step and do not address such limitations. A novel 4-d representation is proposed that adaptively subdivides in space and time to explain the appearance of 3-d dynamic surfaces. This representation is shown to achieve compres- sion of 4-d data and provide efficient spatio-temporal pro- cessing. Theadvancesoftheproposedframeworkisdemon- strated on standard datasets using free-viewpoint video and 3-d tracking applications.... ( full paper )

Trainable Arduiono Arm

From Navic209's youtube channel:   Inspired by the Baxter robot, this arm can be trained to move with your own hands. Once the train button is pressed, you move the arm and gripper as needed while the Arduino stores the positions in EEPROM. After that the arm will replay the motion as needed.   Youtube channel Source on Github Additional projects

PrimeSense Reportedly Aquired By Apple

According to AllThingsD Apple is in the process of buying PrimeSense. PrimeSense is the company that developed and licensed the hardware and chip design used in the original Kinect. This could have an effect on several low cost depth cameras including the ASUS Xtion which uses  PrimeSense  hardware  or the $200 developer camera sold directly from PrimeSense . Their online store is still open but who know for how long.


IEEE Spectrum: As cool as quadrotors are, in most cases they're simply not as good as helicopters. Because of the way they're designed (with four small rotors instead of one big one), they're less powerful, less efficient, and less maneuverable. The power and efficiency issues come from the fact that one big rotor generates more lift per aircraft footprint than four small rotors, and as for maneuverability, a helicopter that can alter rotor pitch instantly will always outmaneuver a quadrotor that can only control blade speed. Seriously, try doing this with a quadrotor. So, the thing that quadrotors have going for them is that they're simple. Helicopters have complex main rotor heads, with shafts and bearings and linkages all over the place, while quadrotors just have four motors and that's it. The University of Queensland researchers came up with a "Y4" configuration that aims to take all the good bits of helicopters and make them as simple as quadrotors. I'm just going to start calling this new design a triquad. Keep in mind that this is still a quadrotor: it just had things shifted around a little bit. Almost all of the triquad's lift comes from its big main fixed-pitch rotor, located at the center of the "Y" (pictured below). The three little fixed-pitch rotors in the "Y" configuration are angled (at a fixed 45 degrees) to provide counter-torque (which they do slightly more efficiently than a helicopter tail rotor) along with pitch and roll control. Here's how the control works... cont'd at IEEE Spectrum Follow up discussions: DIY Drones post and discussion. Hackernews post.

Records 1096 to 1110 of 1534

First | Previous | Next | Last

Featured Product

Robotic Tool Changers Increase Productivity and Reduce Cost

Robotic Tool Changers Increase Productivity and Reduce Cost

The ATI Robotic Tool Changer provides the flexibility to automatically change end-effectors or other peripheral tooling. These tool changers are designed to function reliably for millions of cycles at rated load while maintaining extremely high repeatability. For this reason, the ATI Tool Changer has become the number-one tool changer of choice around the world. ATI Tool Changer models cover a wide range of applications, from very small payloads to heavy payload applications requiring significantly large moment capacity.