OctoMap 1.2 and updated octomap_mapping stack for diamondback, electric & unstable

Announcement from Armin Hornung of Humanoid Robots Lab, Albert-Ludwigs-Universität Freiburg to ros-users

I'm pleased to announce the release of OctoMap 1.2, along with the updated octomap_mapping ROS stack for diamondback, electric, and unstable (see official octomap page and ROS wiki page). This is major step up from the OctoMap 1.0 release and features many under-the-hood improvements (speedup, leaner code, testing, bug fixes) as well as an improved interface for fellow developers. Key features of the new version are: an adjustable sensor model, node-iterators, time-stamped nodes, and an improved make system. A clean separation of the visualization library means that the octomap_mapping stack no longer depends on Qt or OpenGL (our visualization "octovis" will be released later as an additional ROS package). Furthermore, all output in the octomap package is now using proper ROS log levels (thanks to Eric Perko for the patch).

Changelog - http://octomap.svn.sourceforge.net/viewvc/octomap/tags/v1.2/octomap/CHANGELOG.txt

Download - http://sourceforge.net/projects/octomap/files/octomap-1.2.0.tar.gz/download

ROS packages for diamondback, electric, and unstable are being built and will be available soon. Until then, you can get the `octomap_mapping stack from alufr-ros-pkg (http://code.google.com/p/alufr-ros-pkg/)

Your friendly neighborhood OctoMap team ("Kai and Armin")

Featured Product

Schmalz Technology Development - Vacuum Generation without Compressed Air – Flexible and Intelligent

Schmalz Technology Development - Vacuum Generation without Compressed Air - Flexible and Intelligent

• Vacuum generation that's 100% electrical; • Integrated intelligence for energy and process control; • Extensive communication options through IO-Link interface; Schmalz already offers a large range of solutions that can optimize handling process from single components such as vacuum generators to complete gripping systems. Particularly when used in autonomous warehouse, conventional vacuum generation with compressed air reaches its limits. Compressed air often is unavailable in warehouses. Schmalz therefore is introducing a new technology development: a gripper with vacuum generation that does not use compressed air. The vacuum is generated 100% electrically. This makes the gripper both energy efficient and mobile. At the same time, warehouses need systems with integrated intelligence to deliver information and learn. This enables the use of mobile and self-sufficient robots, which pick production order at various locations in the warehouse. Furthermore, Schmalz provides various modular connection options from its wide range of end effectors in order to handle different products reliably and safely.