Thien eDrives Cuts Electric Motor Controller Development Time in Half with Model-Based Design

MathWorks Code Generation Tools for TI's C2000 MCU Speed Progress from First Prototype to Final Series

Natick, MA - MathWorks announced that Thien eDrives (formerly ATB Technologies), a developer of electrical drive systems, used MATLAB and Simulink to model, simulate, and implement an electric motor control system on TI's C2000 microcontroller unit (MCU). By applying Model-Based Design, Thien eDrives moved rapidly from the first prototype to the final series, reducing development time by 50%.

"On past projects, we simulated and verified our designs in Simulink".

To develop an electric drive for a fuel cell vehicle compressor unit, including the motor control software, electronics, motor, and other mechanical components, Thien eDrives needed a design approach that enabled early verification of control strategies, code generation, and rapid design iterations throughout the project. Model-Based Design allowed for verification at multiple stages of development, helping produce a high-quality component within a shortened timeframe. Automatic code generation eliminated the time-consuming and error-prone hand-coding process while providing added confidence of compliance with certain MISRA C standards. Using models also simplified design reviews with Thien eDrives customers by eliminating the need for code review-driven processes.

"On past projects, we simulated and verified our designs in Simulink," says Georg Staffler, development engineer at Thien eDrives. "For this project, we adopted automatic code generation, which enabled us to complete the compressor project twice as fast as a similar project that applied Model-Based Design with hand coding. Code generation resulted in fewer bugs, better quality, and faster iterations, and it enabled a modular approach that facilitated model reuse across projects."

"Electric drive projects are becoming more complex as they require the many components within a system to work together for maximum performance and efficiency," says Jon Friedman, automotive industry marketing manager at MathWorks. "Model-Based Design offers a workflow that enables engineers to work on the design at both the component level and the overall application level. Thien eDrives showcases how this design approach brings efficiencies and advantages to every stage of the development process."

In addition to MATLAB and Simulink, the team used other tools, including Simulink Coder, Embedded Coder, Stateflow, Signal Processing Toolbox, and Simulink Fixed Point. Model-Based Design enabled Thien eDrives to deliver the compressor motor on schedule, and the motor is currently produced and embedded in fuel cell cars on the road today.

More details on the use of MATLAB and Simulink at Thien eDrives can be found at: ATB Technologies Cuts Electric Motor Controller Development Time by 50% Using Code Generation for TI's C2000 MCU.
THIEN eDrives - a competent partner for customer-specific drive solutions

THIEN e-Drives is a competent partner for innovative mechatronic drive systems - from virtual design and prototypes to serial production. Our expertise, bundled with years of experience and standardized processes guarantee highest engineering standards and product quality.

We provide an extensive service range. Besides development of customer-specific system solutions, we also supply 'standard products' at the highest levels of energy efficiency which already meet the requirements of tomorrow's efficiency classes.
Our products are used in a broad range of application such as: machine tools, ventilators, pumps, vacuum pumps, textile machines, printing machines, hoisting equipment, conveyors as well as in the 'mobile application' sector for auxiliaries, traction drives in the automotive sector, electrical bicycles and electrical fun-vehicles.

About MathWorks
MathWorks is the leading developer of mathematical computing software. MATLAB, the language of technical computing, is a programming environment for algorithm development, data analysis, visualization, and numeric computation. Simulink is a graphical environment for simulation and Model-Based Design of multidomain dynamic and embedded systems. Engineers and scientists worldwide rely on these product families to accelerate the pace of discovery, innovation, and development in automotive, aerospace, electronics, financial services, biotech-pharmaceutical, and other industries. MathWorks products are also fundamental teaching and research tools in the world's universities and learning institutions. Founded in 1984, MathWorks employs more than 2200 people in 15 countries, with headquarters in Natick, Massachusetts, USA.

Featured Product

BitFlow Introduces 6th Generation Camera Link Frame Grabber: The Axion

BitFlow Introduces 6th Generation Camera Link Frame Grabber: The Axion

BitFlow has offered a Camera Link frame grabbers for almost 15 years. This latest offering, our 6th generation combines the power of CoaXPress with the requirements of Camera Link 2.0. Enabling a single or two camera system to operate at up to 850 MB/S per camera, the Axion-CL family is the best choice for CL frame grabber. Like the Cyton-CXP frame grabber, the Axion-CL leverages features such as the new StreamSync system, a highly optimized DMA engine, and expanded I/O capabilities that provide unprecedented flexibility in routing. There are two options available; Axion 1xE & Axion 2xE. The Axion 1xE is compatible with one base, medium, full or 80-bit camera offering PoCL, Power over Camera Link, on both connectors. The Axion 2xE is compatible with two base, medium, full or 80-bit cameras offering PoCL on both connectors for both cameras. The Axion-CL is a culmination of the continuous improvements and updates BitFlow has made to Camera Link frame grabbers.