Liquid Robotics Wave Glider battles Hurricane Isaac

G2, a Wave Glider performing scientific missions, was moving out of Hurricane Isaac's projected path when it changed and headed directly for the rugged robot.

SUNNYVALE, Calif., 4 Sept. 2012. A Wave Glider wave-powered autonomous marine robot from Liquid Robotics, an ocean data service provider, stared down Hurricane Isaac while collecting ocean chemistry data in the Gulf of Mexico.


G2, a Wave Glider performing scientific missions, was moving out of Hurricane Isaac's projected path when it changed and headed directly for the rugged robot. As the eye passed 60 miles east of the Wave Glider, its pilots watched as all the other vessels in its area raced out of the Gulf of Mexico. G2--heavily outfitted with sensors to measure water temperature, wind speeds, barometric pressure, and air temperature--remained in the area and provided new insights into the hurricane. Time-lapsed maps showed a dramatic drop in water temperature, suggesting that Isaac was vacuuming the heat from the Gulf. Sustained winds of 40 knots with gusts up to 74 knots and barometric pressure falling to 988.3 mbar demonstrate the storm's intensity.

"Our thoughts go out to all those who have been affected by Hurricane Isaac," Bill Vass, CEO of Liquid Robotics, says. "We are proud to see our Wave Glider not only survive the Category I hurricane, but also continue to communicate valuable real-time weather data as it battled 74 knot winds. Hopefully, autonomous platforms like the Wave Glider will make it possible to better predict the severity and risk to everyone in the Gulf Coast area in the future."

East of Isaac, off the coast of Puerto Rico, another Liquid Robotics Wave Glider, Alex, was launched to support a new joint project to measure hurricane intensity. Working in coordination with the NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML), the marine robot is patrolling for the next hurricane and for a chance to be the first to measure the conditions both above and below the surface of the ocean that are needed to predict hurricane strengthening. Funded by Liquid Robotics, this project promises to provide data never before available to scientists for better hurricane prediction, says a representative.

Featured Product

Model TR1 Tru-Trac

Model TR1 Tru-Trac

The Model TR1 Tru-Trac® linear measurement solution is a versatile option for tracking velocity, position, or distance over a wide variety of surfaces. An integrated encoder, measuring wheel, and spring-loaded torsion arm in one, compact unit, the Model TR1 is easy to install. The spring-loaded torsion arm offers adjustable torsion load, allowing the Model TR1 to be mounted in almost any orientation - even upside-down. The threaded shaft on the pivot axis is field reversible, providing mounting access from either side. With operating speeds up to 3000 feet per minute, a wide variety of configuration options - including multiple wheel material options - and a housing made from a durable, conductive composite material that minimizes static buildup, the Model TR1 Tru-Trac® is the ideal solution for countless applications.