BAE Systems Furthers Micro-robotics Development with Army Research Laboratory Contract Extension

The goal of the research is to enable small robotic platforms - that would be used by individual soldiers - to remotely perform surveillance within complex urban environments and terrain.

MERRIMACK, N.H.--BAE Systems has been awarded a $43 million cooperative agreement extension to lead the Army Research Laboratory's (ARL) Micro Autonomous Systems and Technology (MAST) Collaborative Technology Alliance for an additional five years. As a result, the company will have a significant role working with the MAST Alliance's team of scientists from the U.S. Army, academia, and industry as it advances bio-inspired micro-robotics technology to extend the remote sensing capability of U.S. ground forces. The goal of the research is to enable small robotic platforms - that would be used by individual soldiers - to remotely perform surveillance within complex urban environments and terrain.


"The technologies being developed under MAST will support products that extend soldiers' capabilities while keeping them out of harm's way," said Bill Devine, MAST's strategic development manager for BAE Systems. "We are proud to continue our successful collaboration with the ARL on the next phase of this exciting program."

The second phase of the MAST program continues the research, development and integration of several key areas including micro-scale aeromechanics and ambulation; propulsion; sensing, autonomy, communications, navigation, and control; and microscale integration, among others, enabling several different mission-capable robotic platforms.

"Our recent review by the MAST Research Management Board received high marks for the quality and success of the research conducted over the past five years contributing greatly to the decision to award the five year option to extend the program," said Dr. Brett Piekarski, ARL MAST Consortium manager.

BAE Systems, in cooperation with primary research labs from the University of Maryland, the University of Michigan, the University of Pennsylvania and the NASA Jet Propulsion Lab, will lead the effort for the ARL into 2017.

Featured Product

ST Robotics Develops the Workspace Sentry for Collaborative Robotics

ST Robotics Develops the Workspace Sentry for Collaborative Robotics

The ST Robotics Workspace Sentry robot and area safety system are based on a small module that sends an infrared beam across the workspace. If the user puts his hand (or any other object) in the workspace, the robot stops using programmable emergency deceleration. Each module has three beams at different angles and the distance a beam reaches is adjustable. Two or more modules can be daisy chained to watch a wider area. "A robot that is tuned to stop on impact may not be safe. Robots where the trip torque can be set at low thresholds are too slow for any practical industrial application. The best system is where the work area has proximity detectors so the robot stops before impact and that is the approach ST Robotics has taken," states President and CEO of ST Robotics David Sands.