Scientists Return Setting a New Record with Self-Driving Robots and a Clearer Picture of Ocean Communities

Schmidt Ocean Institutes research vessel Falkor arrives with unprecedented detail of microbial communities found in Eddy fields using new underwater vehicles.

In a joint effort between the Simons Collaboration on Ocean Processes and Ecology (SCOPE), the Monterey Bay Aquarium Research Institute (MBARI), and Schmidt Ocean Institute (SOI), several long-range autonomous underwater vehicles (LRAUVs) have successfully completed their first voyage in the open ocean, obtaining data on the water column down to 250 meters, while autonomously collecting and archive seawater samples to capture microbial community dynamics in the oceans interior. Since March 10th, 2018, the team on research vessel Falkor has been deploying these new robots programmed with several different mission goals, to provide an unprecedented high resolution view of open ocean microbes.

Deploying multiple vehicles simultaneously allowed the research team to continuously sample the biologically important deep chlorophyll maximum within a moving eddy field, setting a new record for duration in this type of mission. Open-ocean eddies are swirling masses of water that move slowly across the Pacific Ocean, and can have large effects on ocean microbes.

The AUVs were deployed for the first time in Hawaiian waters, and remained in the water collecting data for nearly 100 hours before recovery. Timing is important as it allows for the science team to map the eddys structure in 3D while sampling over the course of several daily cycles. This temporal sampling is key, since like people, microbial plankton are believed to synchronize their activities in repetitive daily cycles. The LRAUVs could simultaneously map and sample the oceanographic eddy features in much greater spatial and temporal than would have been possible using other platforms.

Eddies have been difficult to study because of their natural variability, which means their impact on ocean biology, specifically the microbial communities trapped inside, is not well understood. This cruise focused on a cyclonic eddy, rotating counterclockwise, which results in an uplift of the water column that brings nutrients and organisms from greater depths closer to the surface, and sunlight. This is thought to enhance phytoplanktons primary productivity and activity in microbial communities that typically reside in deeper, darker waters.

The expeditions Principal Investigators Drs. Edward DeLong and David Karl, oceanography professors in UH Mānoas School of Ocean and Earth Science and Technology (SOEST) have been studying these microbes for decades. "These new underwater drones will greatly extend our reach to study remote areas, and allow us to sample and study oceanographic events and features, even when ships are not available," said DeLong. "Looking at a day in the life of all these ocean microbes and autonomously tracking them to see what happens on a day-to-day basis is something thats never been possible before".

Eddies are large (~100 km in diameter) so using autonomous instruments such as LRAUVs, greatly facilitates studies of their variability on relevant spatial and temporal scales. The Falkors month long, in the water ground-truthing will also help to validate and inform remote observations of eddy structures and evolution that are derived from satellite data. In addition, experiments conducted by the SCOPE scientists onboard the Falkor and in the sea will provide new information on how eddy physical features affect biological processes and ocean productivity over time. The lead scientists expect to derive unique insights into the duration, stability, and influence of eddies on ocean ecosystems; and will improve current ocean biogeochemical models that are critical to understanding the current and future health of the worlds oceans. Additionally, the LRAUV-collected samples containing microbial community DNA, will be analyzed back on shore with genomic studies aimed at understanding the function, activity and environmental sensitivities of microbial populations that form the foundation of the oceans food web.

Featured Product

SICK, Inc. - Low-Cost LiDAR: Higher Technology That's Easy to Use

SICK, Inc. - Low-Cost LiDAR: Higher Technology That's Easy to Use

LiDAR (Light Detection and Ranging) is one of the most reliable methods for parts sensing in factory automation today. SICK has made this technology affordable and easy to use! Click on the video link below to learn about the TiM1xx LiDAR sensor and how it provides: - Area scanning LiDAR technology in a standard sensor package - 200-degree field of view and 3 meter sensing range allows for 169 square feet of area scanning - Compact size and light weight enables ease of deployment in "non-standard" type applications, like end-of-arm robotic tooling - Wide area scanning without having to mount a transmitter and receiver makes installation much easier - IO Link for easy configuration