Autonomous Drifting

From AMREL:

You know how the stuntmen make fast cars drift in action movies? Have you ever wanted to make a remote-controlled toy car drift like that? Of course you have.  If there ever were awards for endeavors that sound silly, but is actually technically interesting, then the folks at MIT’s Aerospace Controls Lab would surely be nominated.

Unmanned systems are rarely fully autonomous.  Instead, researchers are pursuing “sliding” autonomy, i.e. an operator retains control, while some behaviors are made autonomous. Aerospace Controls Lab decided to teach a remote-control toy car how to autonomously drift.

They started by running their learning algorithm through simulations.  Information from these simulations was transferred to performance modifiers. When the car was run through its drifting actions in reality, the algorithm was constantly modified. The result is a car that can maintain drifting in a full circle even when salt is added to the floor, or another vehicle interferes with it.

 

Featured Product

New incremental encoder IERF3 L from FAULHABER

New incremental encoder IERF3 L from FAULHABER

FAULHABER is expanding its product range with the ultra-precise incremental encoder IERF3 L. Thanks to the optical measuring principle and state-of-the-art chip technology, the device offers the highest resolution, excellent repeatability, and outstanding signal quality. In typical applications, the positioning accuracy is 0.1° and the repeatability 0.007°. This makes the encoder the perfect solution for high-precision positioning applications in confined spaces.