Army completes autonomous micro-robotics research program

David McNally, ARL Public Affairs:  Researchers from industry and universities across the nation have rallied around a collaborative technology alliance with the U.S. Army Research Laboratory since 2008.
A research program called Micro Autonomous Systems and Technology, or MAST, came to its conclusion during a capstone event of presentations and demonstrations from Aug. 22 - 24 of both ground and air micro-robots.
Teams of researchers gave 17 live demonstrations of the technologies they've been working on over the past several years. The University of Pennsylvania showcased a group of autonomous quadcopters that self-organize into formations.
Officials said technology has advanced dramatically during the life of the program.
"I think there's still a long way to go to get them to do all of the behaviors we want in any type of environment," said Dr. Brett Piekarski, the Army's collaborative alliance manager. "There are certain areas where I think we've really pushed the bar and moved the state-of-the-art. One example is in scaling things down to be able to do autonomous behavior in something that fits in the size of your hand."
Piekarski has been with the program since its inception and has managed the alliance of Army, industry and university researchers since 2012.
"In one way, I'm a little sad to see it end," he said. "In another way, I'm really excited because I think we pushed the boundaries of the state-of-the-art and we will be seeing the impact of the advancements within the program for years to come."  Full Article:

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

ST Robotics Develops the Workspace Sentry for Collaborative Robotics

ST Robotics Develops the Workspace Sentry for Collaborative Robotics

The ST Robotics Workspace Sentry robot and area safety system are based on a small module that sends an infrared beam across the workspace. If the user puts his hand (or any other object) in the workspace, the robot stops using programmable emergency deceleration. Each module has three beams at different angles and the distance a beam reaches is adjustable. Two or more modules can be daisy chained to watch a wider area. "A robot that is tuned to stop on impact may not be safe. Robots where the trip torque can be set at low thresholds are too slow for any practical industrial application. The best system is where the work area has proximity detectors so the robot stops before impact and that is the approach ST Robotics has taken," states President and CEO of ST Robotics David Sands.