Kinect Hackers Are Changing the Future of Robotics

For 25 years, the field of robotics has been bedeviled by a fundamental problem: If a robot is to move through the world, it needs to be able to create a map of its environment and understand its place within it. Roboticists have developed tools to accomplish this task, known as simultaneous localization and mapping, or SLAM. But the sensors required to build that map have traditionally been either expensive and bulky or cheap and inaccurate. On November 4, a solution was discovered—in a videogame. That’s the day Microsoft released the Kinect for Xbox 360, a $150 add-on that allows players to direct the action in a game simply by moving their bodies. Most of the world focused on the controller-free interface, but roboticists saw something else entirely: an affordable, lightweight camera that could capture 3-D images in real time. Within weeks of the device’s release, YouTube was filled with videos of Kinect-enabled robots. A group from UC Berkeley strapped a Kinect to a quadrotor—a small helicopter with four propellers—enabling it to fly autonomously around a room. A couple of students at the University of Bundeswehr Munich attached a Kinect to a robotic car and sent it through an obstacle course.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Schmalz Technology Development - Vacuum Generation without Compressed Air – Flexible and Intelligent

Schmalz Technology Development - Vacuum Generation without Compressed Air - Flexible and Intelligent

• Vacuum generation that's 100% electrical; • Integrated intelligence for energy and process control; • Extensive communication options through IO-Link interface; Schmalz already offers a large range of solutions that can optimize handling process from single components such as vacuum generators to complete gripping systems. Particularly when used in autonomous warehouse, conventional vacuum generation with compressed air reaches its limits. Compressed air often is unavailable in warehouses. Schmalz therefore is introducing a new technology development: a gripper with vacuum generation that does not use compressed air. The vacuum is generated 100% electrically. This makes the gripper both energy efficient and mobile. At the same time, warehouses need systems with integrated intelligence to deliver information and learn. This enables the use of mobile and self-sufficient robots, which pick production order at various locations in the warehouse. Furthermore, Schmalz provides various modular connection options from its wide range of end effectors in order to handle different products reliably and safely.