Pipetel's Pipeline Inspection Robots

Pipetel's Explorer is an un-tethered, modular, remotely controllable, self-powered inspection robot for the visual and non-destructive inspection of 6" and 8" natural gas un-piggable transmission pipelines. The most prominent reasons that render a pipeline un-piggable are flow rates that are lower than needed to propel an in-line inspection tool (pig); the presence of obstacles such as valves, mitered bends, back-to-back in and out-of-plane bends; and the cost and operational complications associated with installation of launching and receiving equipment. Explorer can also be used for distribution pipelines as a pre-inspection technology for other rehabilitation and repair techniques. 

The Explorer platform uses a Remote Field Eddy Current Sensor (RFEC) which is a non-destructive inspection sensor that uses low frequency alternating current to measure wall thickness for the entire pipe circumference. Explorer also incorporates two fisheye cameras at each end of the robot that provide high quality visual inspection for locating joints, tees and other pipeline appurtenances. As an in-line inspection tool, Explorer is launced operated and retrieved under live conditions and can negotiate diameter changes, bends and tees up to 90° as well as inclined and vertical sections of the pipeline network.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

ST Robotics Develops the Workspace Sentry for Collaborative Robotics

ST Robotics Develops the Workspace Sentry for Collaborative Robotics

The ST Robotics Workspace Sentry robot and area safety system are based on a small module that sends an infrared beam across the workspace. If the user puts his hand (or any other object) in the workspace, the robot stops using programmable emergency deceleration. Each module has three beams at different angles and the distance a beam reaches is adjustable. Two or more modules can be daisy chained to watch a wider area. "A robot that is tuned to stop on impact may not be safe. Robots where the trip torque can be set at low thresholds are too slow for any practical industrial application. The best system is where the work area has proximity detectors so the robot stops before impact and that is the approach ST Robotics has taken," states President and CEO of ST Robotics David Sands.