T100 Underwater Thruster Designed for Marine Robotics

From BlueRobotics' Kickstarter:

An efficient, rugged, affordable underwater thruster to propel the future of marine robotics and ocean exploration. ($100 dollars a thruster, est delivery Nov 2014)

The T100 is made of high-strength, UV resistant polycarbonate injection molded plastic. The core of the motor is sealed and protected with an epoxy coating and it uses high-performance plastic bearings in place of steel bearings that rust in saltwater. Everything that isn’t plastic is either aluminum or high-quality stainless steel that doesn’t corrode.

A specially designed propeller and nozzle provides efficient, powerful thrust while active water-cooling keeps the motor cool. Unlike other thrusters, our design doesn’t have any air- or oil-filled cavities - water flows freely through all parts of the motor while it's running. That means it can go deep in the ocean and handle extreme pressures.

The thruster is easy to use: just connect the three motor wires to any brushless electronic speed controller (ESC) and you can control it with an RC radio or a microcontroller. It's usable with Arduino, ArduPilot, Raspberry Pi, BeagleBone, and many other embedded platforms... (kickstarter)

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Universal Robots - Collaborative Robot Solutions

Universal Robots - Collaborative Robot Solutions

Universal Robots is a result of many years of intensive research in robotics. The product portfolio includes the UR5 and UR10 models that handle payloads of up to 11.3 lbs. and 22.6 lbs. respectively. The six-axis robot arms weigh as little as 40 lbs. with reach capabilities of up to 51 inches. Repeatability of +/- .004" allows quick precision handling of even microscopically small parts. After initial risk assessment, the collaborative Universal Robots can operate alongside human operators without cumbersome and expensive safety guarding. This makes it simple and easy to move the light-weight robot around the production, addressing the needs of agile manufacturing even within small- and medium sized companies regarding automation as costly and complex. If the robots come into contact with an employee, the built-in force control limits the forces at contact, adhering to the current safety requirements on force and torque limitations. Intuitively programmed by non-technical users, the robot arms go from box to operation in less than an hour, and typically pay for themselves within 195 days. Since the first UR robot entered the market in 2009, the company has seen substantial growth with the robotic arms now being sold in more than 50 countries worldwide.