Optimal Actuator In MIT's Cheetah Robot

From Biomimetics MIT Cheetah project:

The high speed legged locomotion of the MIT Cheetah requires high accelerations and loadings of the robot’s legs.  Because of the highly dynamic environmental interactions that come with running, variable impedance of the legs is desirable; however, existing actuation strategies cannot deliver.  Typically, electric motors achieve their required torque output and package size through high gear ratios.  High ratios limit options for control strategies.  For example, closed loop control is limited to relatively slow speed dynamics.  Series elastic actuation adds additional actuators and increases system complexity and inertia.  We believed a better option existed.  In the end, we developed a novel actuator, optimal in many applications... (project homepage) (full published article)

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

SAS Automation - Robotic End-of-Arm Tooling

SAS Automation - Robotic End-of-Arm Tooling

SAS Automation's complete line of modular components allows you to rapidly build your end-of-arm tools in your own plant, meeting your ever-changing automation needs on-demand. And with our newly enhanced Online Shopping Cart, it's never been easier! IT'S SHOPPING MADE SIMPLE, with features like: • Responsive Design so you can access anytime -- desktop, tablet or phone -- with ease • CAD Model Access with 3D Software Integration • Order History • Saved Quotes • Tool Builder • Product Comparisons • Enhanced Search • Social Media Sharing • Product Reviews