25 teams prepare for 2015 DARPA Robotics Challenge Finals

By David Szondy for Gizmag:  On June 5 and 6, the 2015 DARPA Robotic Challenge (DRC) Finals will take place at Fairplex in Pomona, California. Open to the public, it will see 25 international teams compete for US$3.5 million in prizes as part of an effort to develop robots for disaster relief. Here's what to expect.

This year's challenge will see 25 teams competing. Half of the teams are from the United States, five are from Japan, three from Korea, two from Germany, one from Italy, one from Hong Kong, and one from the People’s Republic of China. They will be vying for a US$3.5 million total of prizes; including a $2 million first prize, a $1 million second prize, and a $500,000 third prize. The robots will be of a wide variety with some humanoid, some four-legged, and some tracked, but all will need to operate free of external power, mechanical support, and limited communications with their controllers.

The basic idea behind DRC 2015 is to make things much harder for the robots than previously.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Schmalz Technology Development - Vacuum Generation without Compressed Air – Flexible and Intelligent

Schmalz Technology Development - Vacuum Generation without Compressed Air - Flexible and Intelligent

• Vacuum generation that's 100% electrical; • Integrated intelligence for energy and process control; • Extensive communication options through IO-Link interface; Schmalz already offers a large range of solutions that can optimize handling process from single components such as vacuum generators to complete gripping systems. Particularly when used in autonomous warehouse, conventional vacuum generation with compressed air reaches its limits. Compressed air often is unavailable in warehouses. Schmalz therefore is introducing a new technology development: a gripper with vacuum generation that does not use compressed air. The vacuum is generated 100% electrically. This makes the gripper both energy efficient and mobile. At the same time, warehouses need systems with integrated intelligence to deliver information and learn. This enables the use of mobile and self-sufficient robots, which pick production order at various locations in the warehouse. Furthermore, Schmalz provides various modular connection options from its wide range of end effectors in order to handle different products reliably and safely.