Artificial Skin That Glows, Stretches Could Change Robotics?

By Brendan Byrne for ValueWalk:  Researchers at Cornell University have developed an electronic artificial skin that doesn’t mind being stretched to 500% its original size (cell phone), glows in the dark and can move a bit like a worm.

In a paper published yesterday in the journal Science, a team of researchers showed off glowing electric skin that could be put to use in future wearables. While artificial skin that responds to commands has been done before, electronics embedded in the skin have generally broken when stretched. However, the team seems to have leaped over this hurdle by using hyperelastic, light-emitting capacitor (HLEC) technology.

“It’s actually much, much, much more stretchable than human skin or octopus skin,” says Chris Larson, a doctoral candidate and researcher in Cornell’s Organic Robotics Lab. “In terms of texture, it’s actually more like a rubber band or a balloon.”

While Larson freely admits that he doesn’t know much about cephalopods, the team was inspired by biology, specifically, the octopus beak with its ability to both move and stretch.

“The researchers created a three-chamber robot from the material, with the newly developed ‘skin’ layers on top, and inflatable layers below that allow movement,” according to a release from the American Association for the Advancement of Science. “As the chambers expand linearly, the robot moves forward with a worm-like wiggle.”  Cont'd...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

TUV Rheinland Robot Integrator Program

TUV Rheinland Robot Integrator Program

The industry's first comprehensive Robot Integrator Program saves robot integrators significant time and cost investments by allowing them to mark each cell compliant with ANSI/RIA R15.06 with the TUV Rheinland Mark. As opposed to a traditional certification or an on-site field labeling, TÜV Rheinland's Robot Integrator Program certifies the knowledge and skill-set of robot integrators in addition to testing robotic cells and processes against ANSI/RIA R15.06. This reduces the need for frequent onsite or off site testing and allows manufacturers to apply a single TÜV Rheinland label to multiple cells. The Robot Integrator Program individually assesses a robot integrator's understanding of the ANSI/RIA R15.06 standard along with the ability to consistently produce compliant robot cells. Following the requirements and procedures of the new program will enable robot integrators to produce individually compliant robotic cells under one serialized TÜV Rheinland Mark, which meets the national electric code and allows acceptance by Authorities Having Jurisdiction (AHJ) and end users.