MIT Builds Invisible Fish Grabbing Robot

Matthew Humphries for PCMag:  Catching a fish can be tough, even if you are just trying to net a goldfish in a small tank. That's because the fish spots the danger and makes a swim for it. But what if you didn't need a net because you're controlling an invisible grabbing robot?

That's what Xuanhe Zhao, a professor of mechanical engineering at MIT succeeded in creating, but its applications go way beyond catching and releasing fish unharmed.

The robot is constructed of a transparent hydrogel, which is strong and durable but mostly made of water. As the video below explains, each arm of the robot is constructed from 3D-printed hollow cubes of hydrogel, which are then linked together. By injecting water using a syringe it's possible to make the arms curl and uncurl quickly in a grabbing motion.  Cont'd...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Zaber's X-LRQ-DE Series:  High Precision Stages with Built-in Controllers and Linear Encoders

Zaber's X-LRQ-DE Series: High Precision Stages with Built-in Controllers and Linear Encoders

Zaber's X-LRQ-DE Series of linear stages have high stiffness, load, and lifetime capabilities in a compact size. The integrated linear encoder combined with stage calibration provides high accuracy positioning over the full travel of the device. At 36 mm high, these stages are excellent for applications where a low profile is required. The X-LRQ-DE's innovative design allows speeds up to 205 mm/s and loads up to 100 kg. Like all Zaber products, the X-LRQ-DE Series is designed for easy set-up and operation.