Self-folding electronics could enable advanced robotics

ACS Applied Materials & Interfaces:  As demand grows for more versatile, advanced robotics and other technologies, the need for components that can enable these applications also increases. Producing such components en masse has been a major challenge. But now, in ACS Applied Materials & Interfaces, researchers report that they have developed a way to help meet this need by printing electronics that can fold themselves into a desired shape. 

Creating small electronic pieces with specific architectural designs can now be accomplished with 3-D printing. But the process can be slow, relatively costly and can lead to structural flaws. So scientists have been working on methods to produce flat electronics that fold after they’re printed. But folding the devices into their desired shapes has required additional processing steps or specific conditions such as light exposure or dunking the pieces into liquids, which is not always a good option for electronic products. To address these limitations, Wojciech Matusik, Subramanian Sundaram and colleagues wanted to come up with a more practical approach.

The researchers formulated a new ink containing acrylate monomers and oligomers that can be cured with ultraviolet light. Energy is stored in specific regions of the printed part in the form of residual stress during the printing process. After the flat device is printed and removed from the printer platform, swelling forces cause it to fold itself into a predetermined shape without additional stimulus. The researchers say the development could have applications in robotics and human-machine interfaces.    Source:

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Schmalz Technology Development - The Right Gripper for Every Task

Schmalz Technology Development - The Right Gripper for Every Task

In order to interact with their environment and perform the tasks, lightweight robots, like all industrial robots, depend on tools - and in many cases these are vacuum grippers. These form the interface to the workpiece and are therefore a decisive part of the overall system. With their help, the robots can pick up, move, position, process, sort, stack and deposit a wide variety of goods and components. Vacuum gripping systems allow particularly gentle handling of workpieces, a compact and space-saving system design and gripping from above. Precisely because the object does not have to be gripped, the vacuum suction cupenables gapless positioning next to each other.