UL and Shell collaborate on a robot that performs inspections in the most challenging environments.

Innovative Robotic Technology Improves Safety in Hazardous Locations

Contributed by | UL LLC

 

In a concerted effort to make oil exploration safer, Shell designed a robot (video) for use in hazardous locations and collaborated with UL for safety certification. Sensabot, as it’s called, monitors equipment, carries out inspections and performs maintenance tasks in potentially explosive atmospheres. The robot was designed to operate remotely in harsh environments, helping workers avoid health, safety and environmental risks.

Sensabot, which is equipped with video cameras, laser scanners, environmental sensors, vibration sensors and more, can operate in extreme temperatures and in potentially explosive and toxic environments. This innovative robot provides a more rapid and effective response for routine maintenance issues and emergencies. Effectively, Sensabot should reduce the downtime needed for inspection and repairs.

Without the creation of the robot, hazardous locations are usually shut down either for an inspection or completion of regular maintenance. And, if something needs to be repaired, additional down time is usually required which equates to loss in profits.

The robot was designed for harsh environments such as those of an oil field, with a high level of hydrogen sulfide, which is highly toxic and flammable. This gas makes the area challenging for on-site oil and gas workers.

Because of UL’s extensive knowledge of available materials (tires, paint, etc.) and over 100 years of expertise with hazardous locations, UL joined industry experts to help ensure that the building process was efficient and safe. OEMs (original equipment manufacturers) were asked to design parts, resolve issues with design equipment, and determine how these parts fit into the overall assembly of the robot. Sensabot uses the following hazardous locations methods of protection: flame proof, encapsulation, increased and intrinsic safety.

UL used its expertise to help develop the certification guidelines and the necessary testing for IECEx certification of the robot. IECEx certification is an adherence to the International Electrotechnical Commission requirements, which states that the equipment conforms to the requirements for the various protection techniques in a potentially explosive atmosphere.

The plan for Sensabot: The robot will reside on an unmanned oil platform and will perform routine maintenance checks and inspections. A technician can remotely maneuver Sensabot out of its charging kennel to look at an area causing issues; conduct inspections; or monitor equipment— all in an effort to avoid presenting an unneeded health risk to an employee. The Sensabot can go anywhere at any time without the need for additional protection.

Sensabot will undergo final testing at Shell’s Pernis complex in the Netherlands before being available for deployment at several of the company’s operated and non-operated ventures. These could include facilities in remote harsh environments, as well as in specific roles in refineries, chemical plants, and LNG terminals.

 

 


Comments (1)

Now doesn't this make sense! I mean, I'm pretty sure that if the situation called for it, someone would physically have to get themselves into that dangerous situation to handle the problem, but as a first arriver and a scout, a robot could easily diagnose the issues and help people to figure out what's going on and get a better angle on the situation!

Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

ST Robotics - R17HS-6, the 6-axis version of the high speed R17 variant

ST Robotics - R17HS-6, the 6-axis version of the high speed R17 variant

The 6-axis version of the R17HS high speed variant of the R17 robot is now available. As is our policy the 6th axis is an optional bolt-on module. At the same time we have made it even faster and new software eliminates shake and greatly improves repeatability as this video shows. Please see https://www.youtube.com/watch?v=3wG0MeiJ-yE. The video would seem to imply a repeatability of 0.01mm but we are sticking with 0.2mm in the spec. The motor specialist was able to tune the motors from the other side of the pond. My first reaction when we put power on and entered the first commands was to jump back in amazement (and maybe an expletive). Tip speed is now 3m/s; that's 3 times as fast as its nearest competitor yet costs half the price. I love it when a plan comes together.