Building a simulation for a palletizing cell helps the integrator and customer start on the same page. Once rate, product, and pallet information is input into the software, realistic cycle times can be shown for any layout/configuration.

Benefits of Developing a Palletizing Simulation

Contributed by | Motion Controls Robotics

Building a simulation for a palletizing cell helps the integrator and customer start on the same page. To build a simulation using the PalletTool software from FANUC, you need to discuss and lay out all the information about the process upfront.

This includes information about:

  • Pallet size
  • Accurate pallet patterns
  • Accurate part dimensions/masses
  • Realistic expectations of rate based on the upstream/downstream process
  • End of Arm Tooling (EOAT) Design – considers the mass and inertia of the EOAT and product load on tooling. In cases where there are multiple parts with different masses, we will usually base the rate off the worst-case scenario

After gathering the data about the process and product to be handled, a robot is selected for the job. Since PalletTool is a FANUC software, the robot’s specifications are already available to the program. The EOAT is designed as a .IGS CAD file and input into the simulation as well as the best layout for the cell. Lastly, items like boxes, pallets, tier or slip sheet racks, cylinders, fencing, and other peripherals can be added.

Simulations can be built for a variety of product types.

Once this information is input into the software, realistic cycle times can be shown for any layout/configuration. Having this simulation available, allows for testing of different setups. As an integrator, we find jobs can go through multiple changes that affect rate such as:

  • Conveyor/rack/product placement
  • Infeed/outfeed conveyor speeds
  • Pallet changes

After the setup is complete and the simulation is running, rates can be analyzed to see how they can be perfected to meet goal robot cycle time by looking more closely at:

  • Motion Time (robot moving)
  • Wait time (waiting on EOAT action, communication, programmed waits)
  • Application time (robot computer delay)

Designing a simulation for any processes that will be performed in hot environments (up to 120 degrees Fahrenheit) is especially helpful because PalletTool can analyze the overheat and/or steady-state overcurrent risks based on different variables and can show the changes adding cooling fans or protective covers on different axes can make.

The simulation can even help you to answer questions about ROI through looking at the life expectancy and even power usage based on different variables including:

  • Running hours/day
  • Running days/year
  • Actual cycle time
  • And price of electricity
  • Regenerative power option on R-30iB and later only

Finally, robot simulations can find singularity issues (robot joints/wrists being programmed to move to a specific point – resulting in a position that is impossible for the robot) before a project hits the floor (sometimes literally), so it can be engineered around ahead of time.

 

 

The content & opinions in this article are the author’s and do not necessarily represent the views of RoboticsTomorrow
Motion Controls Robotics, Inc.

Motion Controls Robotics, Inc.

Motion Controls Robotics (MCRI) provides solutions for customers by designing and building turn-key end of line applications, fulfillment solutions, and general material handling automation.  MCRI offers unmatched capabilities to elevate companies to the next tier of Industry 4.0 by combining automation expertise with full plant and front office connectivity interfacing with ERP/WMS systems. MCRI has been implementing robotic automation since 1995, is a Certified Servicing Integrator for FANUC America, and Certified Integrator by the Robotics Industry Association.

Other Articles

MCRI Webcast Series - Robotics Roundtable
Motion Controls Robotics (MCRI) is hosting a monthly, summer webcast series in 2021. MCRI provides automation solutions for customers by designing and building turn-key end of line applications, fulfillment solutions, and general material handling automation.
Where Should the Robot Controller Go?
You can save yourself surprises by planning robot controller mounting and wireway routing ahead with your selected robot integrators project team.
Robotic Label Placement
The company was looking to integrate a robot system that could handle placing a product sheet label in at least 5 different, smaller container models. The customer came to us with the hope of being able to improve throughput and consistency in their label placement process.
More about Motion Controls Robotics, Inc.

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Waypoint Robotics/Productive Robotics Easy to Use, Omnidirectional 7 DoF Mobile Manipulator

Waypoint Robotics/Productive Robotics Easy to Use, Omnidirectional 7 DoF Mobile Manipulator

Waypoint Robotics/Productive Robotics omnidirectional 7 DoF mobile manipulator combines the easiest to use, most capable omnidirectional autonomous mobile robot with the simplest and most flexible 7 axis collaborative robot arm. The Vector AMR's omnidirectional mobility enables fast, precise docking in any direction or orientation so the OB7 can perform accurate and precise grasping or picking tasks, taking full advantage of the cobots' 7 degrees of freedom (7 DoF) and superior dexterity. It can be powered using Waypoint's EnZone wireless charger that provides on-demand energy and opportunity charging for longer run times. Workers can use this mobile platform to perform repetitive tasks such as machine tending, quality assurance sampling, material replenishment, packaging, and many others, so they can focus on the high skilled jobs for which they are uniquely qualified. It has never been easier or more cost effective to deploy a mobile manipulator for manufacturing and logistics applications.