Sensors and gripper arms can simply be attached and removed as needed. You dont even have to be a specialist to quickly and easily replace a defective part, which makes the robots extremely flexible and economical to operate.

The Art of Building a Robot

Stefan Roschi | maxon motor

Reprinted with permission from the maxon motors blog:

Philip Norman used to be an architect and a painter. Then he made an invention that could prove to be a game-changer for the way robots are built in the future.

Canada-born Philip Norman has always been fascinated by simplicity. As an architect, he preferred a minimalist style, and as a painter, he reduced forms to their essence. One day as he was watching his children play, he began to ponder the question why toys couldn’t be made simpler – using modular parts.

Fascinated by the idea, he got hold of a CAD drawing program and sat down in front of his computer. “I was really enthusiastic and forgot everything around me,” he recollects. Finally, one year later, Philip Norman concluded the development of a modular component and applied for a patent. At the patent office it became apparent that nothing comparable existed, no one had yet thought in this particular way.

Now all that was left to do, was to find a suitable area of application. “I thought of the toy industry at first, but that didn’t work out. A friend then pointed me in the direction of robots. I knew very little about robotics and had to teach myself a lot of things. But it quickly became apparent that this area offered great potential.” Because today’s robots are almost always developed and built for one particular purpose, their sensors and tools are permanently installed, with changes requiring a substantial cost and time investment. If anything breaks, the robot needs to be examined by an expert, which costs more time and money.

 

Robots of various sizes

Philip Norman’s fledgling company Ross Robotics follows a different philosophy. The robots have a modular design, with each element featuring a brushless flat motor from maxon and the EPOS4 positioning controller. “I needed a motor that is very compact and at the same time delivers high amounts of torque,” says Philip Norman.

The modular design of this robot from Ross Robotics makes it suitable for many different applications.

 
His modular components can be assembled into robots of various sizes. Sensors and gripper arms can simply be attached and removed as needed. You don’t even have to be a specialist to quickly and easily replace a defective part, which makes the robots extremely flexible and economical to operate. If the application changes, the device’s modular design can be adapted to the new situation.
 

Working at CERN

The startup sees great potential in the field of inspection robots. Several Ross Robotics models are already operating in this sector, including at the European Organization for Nuclear Research (CERN) in Meyrin, Switzerland, where one such robot is used in the particle accelerator. The models will soon be commercially available and are currently undergoing certification. Philip Norman is firmly convinced that his invention will change our understanding of robots. However, he wants his company to remain small enough to be able to continue focusing on research and development – there is much left that he would like to simplify.

 

The content & opinions in this article are the author’s and do not necessarily represent the views of RoboticsTomorrow
maxon

maxon

maxon is a leading supplier of high-precision DC brush and brushless servo motors and drives. These motors range in size from 4 - 90 mm and are available up to 500 watts. We combine electric motors, gears and DC motor controls into high-precision, intelligent drive systems that can be custom-made to fit the specific needs of customer applications.

Other Articles

The Surgical Robot that Unfolds Inside the Abdomen
The start-up company NISI (HK) Limited is currently developing a miniature surgical robot that can be inserted though natural openings in the body and only unfolds inside the abdomen.
Sensorless Control of Brushless Motors
Many applications would benefit from a brushless motor without a sensor. There are various options for realizing this. A method developed by maxon is now setting new standards for precision and reliability.
Smart Gripper for Small Collaborative Robots
With the growth and proliferation of collaborative robots, there has become an increased need for a wide variety of grippers and end effectors in general. One of the more challenging applications is for automated gauging and measurement of small parts.
More about maxon

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

ATI Industrial Automation - Manual Tool Changers

ATI Industrial Automation - Manual Tool Changers

Simpler, stronger, and more precise. ATI Industrial Automation has developed a series of Manual Tool Changers that provides a cost-effective solution for quickly changing tools by hand. They feature a unique design that combines high strength, excellent repeatability, and a patent-pending screw-cam locking mechanism with multiple fail-safe features, which resists vibration and prevents loosening. These robust and compact Manual Tool Changers can handle payloads up to 80 pounds (36 kg) and pass pneumatics and electrical signals.