Robotic devices for clinical rehabilitation of patients with neurological impairments come in a wide variety of shapes and sizes and employ different kinds of actuators.

Morphological Approaches in Medical Technology

Contributed by | maxon motors

Reprinted with permission from drive.tech from maxon motors:

The design process for rehabilitation robots is driven by the intention that the technical system will be paired with a human being; it is of paramount importance that safety and flexibility of operation are ensured. When designing a robotic device for people with paretic limbs it is usually desirable to specify the actuators and controllers in such a way that a degree of compliance and yielding is retained, rather than forcing the limbs to rigidly follow a pre-programmed trajectory. This reduces the likelihood of injury which might result from forcing a stiff joint to move in a non-physiological manner, and it allows the patient to positively interact with the system and actively guide the therapy.

It is not uncommon to come across the viewpoint that electric actuators are not well suited to applications having compliant design requirements: in traditional control engineering, DC motors are programmed to provide accurate and fast setpoint tracking; it is often thought that they are not ideally suited for clinical rehabilitation tasks where “soft” behavioural characteristics are called for. This view has led to the emergence of alternative actuator concepts where the desirable properties of compliance are more obvious: passive elastic components, pneumatic valves and actuators, or even artificial muscle constructs have been employed. This gives devices with interesting properties which naturally interact in a yielding manner with the human user. These approaches can be said to take a morphological viewpoint, viz. they have the shape, form or external structure akin to that of an organism.

Recumbent trike prototype for adults. The power for the flat motor and rear wheel hub is supplied by a battery.

Designing a rehabilitation robot from a robust engineering perspective with high-performance DC motors does not preclude features more readily associated with morphological computation and control concepts, i.e. characteristics of compliance and yielding. A simple embodiment of this principle is an impedance control strategy where the torque at a joint is controlled to be proportional to the position deviation, velocity and higher-order terms. These ideas are visible in products like the Lokomat locomotion-rehabilitation robot from Hocoma AG, or in our own range of rehabilitation tricycles including the PowerTrike.

The design of rehabilitation robots lends itself well to morphological ways of thinking since computation and control structures are farmed out from a central processing unit – in this case the damaged central nervous system – to external materials and components. In my view traditional control engineering approaches are well able to deliver systems of this form: engineering concepts for the design of electric drives and control systems have been around for a very long time; they can provide a solid basis for rehabilitation robots and, with an appropriate perspective, they can embody behavioural features to the fore in morphology.

 
 
About Kenneth Hunt
Kenneth Hunt is Professor for Rehabilitation Engineering and head of the Institute for Rehabilitation and Performance Technology in the Department of Engineering and Information Technology at Bern University of Applied Sciences in Burgdorf, Switzerland. He is also a Research Associate at the neuro-rehabilitation clinic Reha Rheinfelden, Rheinfelden, Switzerland. The Scottish-born expert in the field of rehabilitation was co-founder of the “Scottish Centre for Innovation in Spinal Cord Injury” in Glasgow and left his mark on the Centre as inaugural Director of Research.

 

The content & opinions in this article are the author’s and do not necessarily represent the views of RoboticsTomorrow
maxon

maxon

maxon is a leading supplier of high-precision DC brush and brushless servo motors and drives. These motors range in size from 4 - 90 mm and are available up to 500 watts. We combine electric motors, gears and DC motor controls into high-precision, intelligent drive systems that can be custom-made to fit the specific needs of customer applications.

Other Articles

The Surgical Robot that Unfolds Inside the Abdomen
The start-up company NISI (HK) Limited is currently developing a miniature surgical robot that can be inserted though natural openings in the body and only unfolds inside the abdomen.
Sensorless Control of Brushless Motors
Many applications would benefit from a brushless motor without a sensor. There are various options for realizing this. A method developed by maxon is now setting new standards for precision and reliability.
Smart Gripper for Small Collaborative Robots
With the growth and proliferation of collaborative robots, there has become an increased need for a wide variety of grippers and end effectors in general. One of the more challenging applications is for automated gauging and measurement of small parts.
More about maxon

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Schmalz Technology Development - Vacuum Generation without Compressed Air - Flexible and Intelligent

Schmalz Technology Development - Vacuum Generation without Compressed Air - Flexible and Intelligent

• Vacuum generation that's 100% electrical; • Integrated intelligence for energy and process control; • Extensive communication options through IO-Link interface; Schmalz already offers a large range of solutions that can optimize handling process from single components such as vacuum generators to complete gripping systems. Particularly when used in autonomous warehouse, conventional vacuum generation with compressed air reaches its limits. Compressed air often is unavailable in warehouses. Schmalz therefore is introducing a new technology development: a gripper with vacuum generation that does not use compressed air. The vacuum is generated 100% electrically. This makes the gripper both energy efficient and mobile. At the same time, warehouses need systems with integrated intelligence to deliver information and learn. This enables the use of mobile and self-sufficient robots, which pick production order at various locations in the warehouse. Furthermore, Schmalz provides various modular connection options from its wide range of end effectors in order to handle different products reliably and safely.