Robotic devices for clinical rehabilitation of patients with neurological impairments come in a wide variety of shapes and sizes and employ different kinds of actuators.

Morphological Approaches in Medical Technology

Contributed by | maxon motors

Reprinted with permission from drive.tech from maxon motors:

The design process for rehabilitation robots is driven by the intention that the technical system will be paired with a human being; it is of paramount importance that safety and flexibility of operation are ensured. When designing a robotic device for people with paretic limbs it is usually desirable to specify the actuators and controllers in such a way that a degree of compliance and yielding is retained, rather than forcing the limbs to rigidly follow a pre-programmed trajectory. This reduces the likelihood of injury which might result from forcing a stiff joint to move in a non-physiological manner, and it allows the patient to positively interact with the system and actively guide the therapy.

It is not uncommon to come across the viewpoint that electric actuators are not well suited to applications having compliant design requirements: in traditional control engineering, DC motors are programmed to provide accurate and fast setpoint tracking; it is often thought that they are not ideally suited for clinical rehabilitation tasks where “soft” behavioural characteristics are called for. This view has led to the emergence of alternative actuator concepts where the desirable properties of compliance are more obvious: passive elastic components, pneumatic valves and actuators, or even artificial muscle constructs have been employed. This gives devices with interesting properties which naturally interact in a yielding manner with the human user. These approaches can be said to take a morphological viewpoint, viz. they have the shape, form or external structure akin to that of an organism.

Recumbent trike prototype for adults. The power for the flat motor and rear wheel hub is supplied by a battery.

Designing a rehabilitation robot from a robust engineering perspective with high-performance DC motors does not preclude features more readily associated with morphological computation and control concepts, i.e. characteristics of compliance and yielding. A simple embodiment of this principle is an impedance control strategy where the torque at a joint is controlled to be proportional to the position deviation, velocity and higher-order terms. These ideas are visible in products like the Lokomat locomotion-rehabilitation robot from Hocoma AG, or in our own range of rehabilitation tricycles including the PowerTrike.

The design of rehabilitation robots lends itself well to morphological ways of thinking since computation and control structures are farmed out from a central processing unit – in this case the damaged central nervous system – to external materials and components. In my view traditional control engineering approaches are well able to deliver systems of this form: engineering concepts for the design of electric drives and control systems have been around for a very long time; they can provide a solid basis for rehabilitation robots and, with an appropriate perspective, they can embody behavioural features to the fore in morphology.

 
 
About Kenneth Hunt
Kenneth Hunt is Professor for Rehabilitation Engineering and head of the Institute for Rehabilitation and Performance Technology in the Department of Engineering and Information Technology at Bern University of Applied Sciences in Burgdorf, Switzerland. He is also a Research Associate at the neuro-rehabilitation clinic Reha Rheinfelden, Rheinfelden, Switzerland. The Scottish-born expert in the field of rehabilitation was co-founder of the “Scottish Centre for Innovation in Spinal Cord Injury” in Glasgow and left his mark on the Centre as inaugural Director of Research.

 

The content & opinions in this article are the author’s and do not necessarily represent the views of RoboticsTomorrow
maxon group

maxon group

maxon is a leading supplier of high-precision DC brush and brushless servo motors and drives. These motors range in size from 4 - 90 mm and are available up to 500 watts. We combine electric motors, gears and DC motor controls into high-precision, intelligent drive systems that can be custom-made to fit the specific needs of customer applications.

Other Articles

Cybathlon: A Success for the Maxon Teams
The CYBATHLON 2020 Global Edition is history. Due to the Covid-​19 pandemic, the teams had to compete in different time zones and locations. And out of the 50 teams participating, one in four teams were using maxon products.
5 Challenges a Motor Has to Overcome on Mars Home
Outer space is unforgiving. This is why precision drives embarking on a trip to other planets need to meet extremely high quality standards.
Smart ArM: Pushing the limits of the human body
The result of several years of research, the design of this prosthesis represented a real challenge as it involved creating a prosthetic elbow. This article looks back at this technological feat and human adventure.
More about maxon group

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Destaco’s PNEUMATIC PARALLEL GRIPPERS - RTH & RDH

Destaco's PNEUMATIC PARALLEL GRIPPERS - RTH & RDH

Destaco's Robohand RDH/RTH Series 2 and 3 jaw parallel grippers have a shielded design that deflects chips and other particulate for a more reliable, repeatable operation in part gripping applications ranging from the small and lightweight, to the large and heavy. RDH Series of Rugged, Multi-Purpose Parallel Grippers for Heavy Parts - Designed for high particulate application environments, automotive engine block, gantry systems, and ideal for heavy part gripping The series includes eight sizes for small lightweight to large/heavy part gripping. RTH Series of Powerful, Multi-Purpose Parallel Grippers for Heavy Parts - Designed for large round shaped parts, automotive engine block and gantry systems, and heavy part gripping. They're available in eight sizes for small lightweight to large and heavy part gripping.