The good news is that space-based exploration, travel and research are all ramping up not just at renowned organizations like NASA, but also at privatized operations such as Space-X and Made In Space.

Will Creating Robots for Space Travel Become More Necessary in the Near Future?
Will Creating Robots for Space Travel Become More Necessary in the Near Future?

Kayla Matthews | Productivity Bytes

For years, robots have been used for so many tasks off-world. The infamous Curiosity rover has spent seven years traveling across the surface of Mars since its August 2012 landing. Two others — named Spirit and Opportunity — acted as stand-in geologists while traversing the red planet.

Closer to home, Dextre or Special Purpose Dexterous Manipulator (SPDM) helps complete tasks on the ISS. And, of course, there are many more robots that have been used in space to complete various tasks and conduct research.

Arguably, space travel and exploration is one of the most important tasks when it comes to understanding the greater universe. The probes sent out to planets within our solar system have already returned a lot of useful information, but there’s so much more to be gathered. We've only scratched the surface in regard to what we can learn and gain from space exploration.

The question is, who will be doing most of the exploring? Humans or robots?


The Logistics of Space Travel

Due to the nature of space travel and the time involved to reach far distances, it seems highly unlikely that humans will be undertaking expansive trips anytime soon. Depending on the speed of the launch and the craft used, a trip to Mars can take anywhere from 150 to 300 days.

Inherently, that may not seem like much, but it's important to consider the supplies necessary for the trip itself, let alone those needed to survive on the planet’s surface for an extended period. And as for coming home, teams will need the supplies necessary to make it back too. All of that would make the craft heavier and slower.

Of course, burning more fuel would accelerate the craft, speeding up its travel time, but that’s not an ideal solution with today’s technology. The fuel used by most spacecraft and shuttles is incredibly expensive and often limited in regard to what can be stored for a trip.

The best alternative is, unquestionably, sending a robotic or automated craft in place of humans. That’s exactly why many of the robotics exploring the red planet today are designed to be fully autonomous. As we push toward the farther reaches of space, it will become even more necessary to use technology and robotics that can navigate and thrive on their own.


The Conditions of Space

Of course, there’s also the matter of conditions in space, which are not suitable at all for humans. Besides the lack of oxygen, space is extremely cold. The conditions alone can make regular tasks difficult, not including the restrictive nature of most protective gear or spacesuits. This is why we see robots like the Astrobee companions assisting astronauts on the International Space Station.

Other harmful conditions include radiation, extreme temperature changes, gravity, pressure, potential impacts, potential vibrations and much more. It calls for the use of special materials that can withstand the harsh conditions but also keep a robotic or electronic system operational even under intense pressure. It’s up to the engineers and creators of these systems to understand conditional requirements but also put together highly functional systems that can complete various operations even when faced with the unknown.

All these details highlight just how challenging, albeit exciting, working in the space robotics and engineering field truly is.


Is Space Robotics a Good Field to Get Involved With?

Working with advanced robotics in general is an exciting field. It stands to reason that working with aeronautical and space robots would follow the same pattern. The more relevant question is whether or not it’s a lucrative field for interested professionals.

The good news is that space-based exploration, travel and research are all ramping up not just at renowned organizations like NASA, but also at privatized operations such as Space-X and Made In Space. One look at NASA’s Robonaut site will reveal everything about the exciting projects they’re working on currently.

According to Glassdoor, a new graduate working as a Robotics Engineer for NASA’s Jet Propulsion Laboratory will make anywhere from $68K to $127K per year. As is expected, however, that kind of career track does require the proper education and certifications to get involved, including either a bachelor’s or master's in engineering.

Still, it’s impossible to deny the allure of off-world exploration, particularly when it comes to firsthand experience working with the kinds of robotic systems that will be traveling through space and trekking across alien planets.



* Image by Pixabay


The content & opinions in this article are the author’s and do not necessarily represent the views of RoboticsTomorrow
Kayla Mathews - Contributing Author

Kayla Mathews - Contributing Author

Matthews is a tech journalist and writer, whose work has appeared on websites such as VentureBeat, The Week, VICE's Motherboard and She is also a senior writer at MakeUseOf and the owner of

Other Articles

The Robotics Engineering Job Market: Expected Growth and Changes
As society becomes more dependent on technology, the robotics engineering job market will go through changes. Here are some of the things to expect this year and in the near future.
The Strangest Reasons We've Seen Robots Engineered For So Far
Robots — we can't live with them and we can't live without them. Some potential applications of robotics are strange but ultimately very promising, while others seem downright pointless.
How Robotics and Automation Are Changing the Construction Industry
Ready or not, advanced robotics, AI and automated hardware are all making their way into the construction industry. As these technologies are adopted on a grand scale, we'll start to see many archaic processes upgraded — not just to be more modern, but also more efficient...
More about Kayla Mathews - Contributing Author

Comments (0)

This post does not have any comments. Be the first to leave a comment below.

Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

ST Robotics Develops the Workspace Sentry for Collaborative Robotics

ST Robotics Develops the Workspace Sentry for Collaborative Robotics

The ST Robotics Workspace Sentry robot and area safety system are based on a small module that sends an infrared beam across the workspace. If the user puts his hand (or any other object) in the workspace, the robot stops using programmable emergency deceleration. Each module has three beams at different angles and the distance a beam reaches is adjustable. Two or more modules can be daisy chained to watch a wider area. "A robot that is tuned to stop on impact may not be safe. Robots where the trip torque can be set at low thresholds are too slow for any practical industrial application. The best system is where the work area has proximity detectors so the robot stops before impact and that is the approach ST Robotics has taken," states President and CEO of ST Robotics David Sands.