New Muscle-Inspired Actuators Hold Potential to Build Safer, Soft-Bodied Robots

Robots should be safer and softer in order to make them more cooperative and execute tasks in close contact with humans. George Whitesides, Ph.D., a Core Faculty member at Harvard’s Wyss Institute for Biologically Inspired Engineering and the Woodford L. and Ann A. Flowers University Professor of Chemistry and Chemical Biology in Harvard University’s Faculty of Arts and Sciences (FAS), along with his team, has created a new actuator that moves like human skeletal muscles by using vacuum power for automating soft, rubber beams.

These actuators are soft and shock absorbing similar to real muscles, and do not pose any danger to their surroundings or the human beings working along with them or the future robots containing them. This study was published in the June 1 issue of the Advanced Materials Technologies journal.  Cont'd...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

SCHUNK's New Safety Gripping System EGN

SCHUNK's New Safety Gripping System EGN

With the SLS, SOS, and STO functionalities, the SCHUNK EGN gripping system certified in accordance with DIN EN ISO 13849 enables safe human/machine collaboration. If the production process is interrupted by an emergency shut-off, the SCHUNK EGN goes into either a safely limited speed mode or a safe stop mode depending on the activated protection zone. In contrast to other solutions available on the market, the SCHUNK safety gripping system is continuously powered even in the safe operating stop so that the gripped parts are reliably held even without mechanical maintenance of gripping force. As soon as the protection zone is released, the gripper immediately switches back to the regular operating mode without the system having to be restarted.