Brain-controlled robots

CSAIL system enables people to correct robot mistakes using brain signals.
Adam Conner-Simons via MIT News:  For robots to do what we want, they need to understand us. Too often, this means having to meet them halfway: teaching them the intricacies of human language, for example, or giving them explicit commands for very specific tasks.

But what if we could develop robots that were a more natural extension of us and that could actually do whatever we are thinking?

A team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and Boston University is working on this problem, creating a feedback system that lets people correct robot mistakes instantly with nothing more than their brains.  Cont'd...

Comments (0)

This post does not have any comments. Be the first to leave a comment below.


Post A Comment

You must be logged in before you can post a comment. Login now.

Featured Product

Dynatect Automated Machine Safety Roll-Up Doors

Dynatect Automated Machine Safety Roll-Up Doors

Need to increase safety? Are you using light curtains? Is space a concern? Dynatect's Gortite® VF Automated Machine Safety Door combines safety technology, speed, and a physical barrier to isolate hazardous operations. Use of a physical barrier with safety sensors can save up to 30 square feet of manufacturing space. Using the ANSI minimum safety distance formula, the Gortite® VF Door limits the depth penetration factor and average approach speed, allowing closer location of the safeguarding device. Unlike light curtains, which can't contain process hazards, an automated machine safety door can isolate common workplace debris. This physical barrier is designed to contain process driven hazards such as weld sparks, UV flash, and light debris. Thus, the operator can maintain closer proximity to the work area improving ergonomics and productivity.