An In-Depth Customer Look At The Cubelets KT01 Construction Kit

Birgus Latro has posted a write up and several videos looking at the Cubelets KT01 Construction Kit from Modular Robotics . This is the first production run of the Cublets and was limited to just 100 kits. Cublets are a modular robotics kit that consists of 20 magnetic blocks that can be snapped together to make an endless variety of robots with no programming and no wires. Each cubelet in the kit has different equipment on board and a different default behavior. There are Sense Blocks that act like our eyes and ears; they can sense light, temperature, and how far they are away from other objects.

MoNETA: A Mind Made from Memristors

IEEE Spectrum has an article by Dr Massimiliano Versace about a memristor-based approach to AI that consists of a chip that mimics how neurons process information. Researchers have suspected for decades that real artificial intelligence can't be done on traditional hardware, with its rigid adherence to Boolean logic and vast separation between memory and processing. But that knowledge was of little use until about two years ago, when HP built a new class of electronic device called a memristor. Before the memristor, it would have been impossible to create something with the form factor of a brain, the low power requirements, and the instantaneous internal communications. Turns out that those three things are key to making anything that resembles the brain and thus can be trained and coaxed to behave like a brain. In this case, form is function, or more accurately, function is hopeless without form. Basically, memristors are small enough, cheap enough, and efficient enough to fill the bill. Perhaps most important, they have key characteristics that resemble those of synapses. That's why they will be a crucial enabler of an artificial intelligence worthy of the term.

Demo Software To Visualize, Calibrate and Process Kinect Cameras Output

Kinect RGBDemo and the Nestk Library by Nicolas Burrus aim at providing a simple toolkit to start playing with Kinect data and develop standalone computer vision programs without the hassle of integrating existing libraries.  The 0.6 release includes two new demos, an interactive program to calibrate multiple RGBD cameras, and a one shot 3D model acquisition of objects lying on a table based on  PCL  table top detector. Current features include: Grab kinect images and visualize / replay them Support for  libfreenect  and  OpenNI/Nite  backends Extract skeleton data / hand point position (Nite backend) Integration with  OpenCV  and  PCL Multiple Kinect support and calibration Calibrate the camera to get point clouds in metric space (libfreenect) Export to meshlab/blender using .ply files Demo of 3D scene reconstruction using a freehand Kinect Demo of people detection and localization Demo of gesture recognition and skeleton tracking using Nite Demo of 3D model estimation of objects lying on a table (based on PCL table top object detector) Demo of multiple kinect calibration Linux, MacOSX and Windows support      

Inside The Innards of a Nuclear Reactor

The robotic inspector looks like nothing more than a small metallic cannonball. There are no propellers or rudders, or any obvious mechanism on its surface to power the robot through an underwater environment. A robot outfitted with external thrusters or propellers would easily lodge in a reactor’s intricate structures, including sensor probes, networks of pipes and joints. As the robot navigates a pipe system, the onboard camera takes images along the pipe’s interior. The original plan was to retrieve the robot and examine the images afterward. But now the MIT project director and his students are working to equip the robot with wireless underwater communications, using laser optics to transmit images in real time across distances of up to 100 meters. 

Top Ten Robot Limbs

MAKE Magazine has a selection of ten of the most interesting robotic limbs from the archives. Including a robot sorts over 400 pancakes per minute.

Bilibot: A $1200 Dollar Robot Built Around The Microsoft Kinect Sensor

The Bilibot Project started at MIT through the exploration of what could be done with the new Microsoft Kinect sensor. Besides being a great sensor for gesture technology, the Kinect is a powerful robotic sensor - so much so that robotics laboratories at universities across the world are replacing their $5000 sensors with the $150 Kinect! The Bilibot project takes advantage of this new technological breakthrough to provide a research quality robot at a hobby robot's price.   For $1,200.00 you get: an iRobot Create a Kinect (modified to run off of a battery) a computer running all the nessecary open source software a small robot arm that uses geared motors, and can lift objects weighting up to 3 lbs and all the mounting hardware, , wiring and electronics needed to put it all together.   They also have a promotion where they'll send you back $350 if you buy a BiliBot and program it to do something new and interesting and make the source available to the rest of the BiliBot community.   The current batch of Bilibots are sold out but the next batch will be available in September.

Lumenlab's micRo-CNC

  Lumenlab's micRo-CNC is a precision fabrication system that is small enough to fit on a desktop and light enough to take anywhere. micRo is a unique system which can be used for both additive (printing) and subtractive (milling, cutting) fabrication. It is a precise, modular tool which allows you to create complex objects out of wood, metal, and plastic.     

Using robots for packaging, sorting and labeling.

RobotWorx has an article up that showcases various available robots that can aid in packaging and sorting tasks. Motoman's has a series of dual arm robots extremely well-suited for packing applications. Dual-arm robots are extremely precise and dexterous, offering human-like assembly capabilities. The arms can be programmed to work collaboratively or separately. The Fanuc M-1iA Robot (pictured above) is a lightweight and compact robot that is capable of sorting very small items and placing those items in packaging.

Automating Distribution

Using hundreds of autonomous mobile robots and sophisticated control software, the Kiva Mobile-robotic Fulfillment System enables extremely fast cycle times with reduced labor requirements, from receiving to picking to shipping - all without conveyor. IEEE Spectrum has a great article and video of the robots in action.  

Using The Open Source Micro Controller Arduino In Design

Firefly is a set of comprehensive software tools dedicated to bridging the gap between Grasshopper (a free visual parametric modelling plug-in for Rhino) and the Arduino micro-controller. This allows designers to tweak, experiment and control in realtime various elements of design with cheap and widely available devices like Nintendo's Wii Nunchuk controller or  Parallax's PING ultrasonic sensor which provides a very low-cost and easy method of distance measurement. <br>

Robofold: Using Robotics And Generative Software To Bend Sheet Metal!

Gregory Epps uses standard industrial robots to build complex and accurate forms out of sheet metal. The forming is achieved by folding sheet metal along curved crease lines. Using the Grasshopper generative CAD software alongside Kangaroo , physics simulation software, Gregory is able to build objects not possible with other methods of sheet metal manipulation. The Robofold webpage is here and Gregory also has another site that discusses topics related to CAD and generative design. You can also watch a video of the robots assembling the chair pictured  here.

European Garment Industry Research Project "Leapfrog IP"

Leapfrog IP is a group research project with partners from the European clothing and textiles industries, technology companies and academia. The goal of the project was to transform the European clothing sector into a technology and knowledge based industry to give European clothing manufacturing a competitive advantage in an industry where low cost labor countries dominate. The project has ended and the results of the project are available here  or on their YouTube channel here.

Obama Pushes High Tech Partnership to Fix Manufacturing Woes

Joking that "one of my responsibilities as commander-in-chief is to keep an eye on robots," President Obama on Friday announced a new public-private sector partnership that will be tasked with driving "a renaissance of American manufacturing." In a speech at Carnegie Mellon University's National Robotics Engineering Center in Pittsburgh, Pa., Obama laid out plans for the "Advanced Manufacturing Partnership" (AMP) . According to the president, the group will bring together top engineering universities, beginning with Carnegie Mellon, Stanford, University of California-Berkeley, Georgia Institute of Technology, MIT and the University of Michigan, and leading U.S. manufacturers including Johnson & Johnson, Honeywell, Caterpillar, Northrop Grumman and Corning. Led by Susan Hockfield, President of MIT, and Andrew Liveris, the CEO of Dow Chemical, a White House press release explained AMP will work across sectors to "create high quality manufacturing jobs and enhance our global competitiveness." The release noted that the partnership will "leverage existing programs and proposals" and invest more than $500 million to jumpstart the effort.

U.S. Military To Keep Robotic Edge in Face of $400 Billion Cuts

U.S. Deputy Secretary of Defense William Lynn said the U.S. will maintain its lead in unmanned robotic technology in the face of a $400 billion reduction in defense spending. "Robotics and unmanned technology is a key future" for the U.S. military, Lynn said in Paris today ahead of this year's Air Show. The Pentagon will also seek to maintain a lead in cyber security and the capability to strike long-range targets using a combination of missiles, aircraft and electronic attack, he said at briefing. The Pentagon is reviewing its long-range spending plans to meet President Barack Obama's goal of reducing spending over 12 years to help cut the U.S. deficit. Outgoing Defense Secretary Robert Gates and Leon Panetta, his successor, have said all defense programs are under review. "No country with a weak economy is going to be strong militarily," Lynn said. "So, it's a strategic imperative that we tackle the budget deficit" including ways to reduce defense spending. Still, there are some areas of emerging military strength the U.S. will try to preserve, including unmanned robotic technologies, because it's not clear "the exact shape they will take, or the precise advantages they will confer" Lynn said in prepared remarks that he plans to deliver at a dinner organized by the U.S. Aerospace Industries Association.

Kinect Hackers Are Changing the Future of Robotics

For 25 years, the field of robotics has been bedeviled by a fundamental problem: If a robot is to move through the world, it needs to be able to create a map of its environment and understand its place within it. Roboticists have developed tools to accomplish this task, known as simultaneous localization and mapping, or SLAM. But the sensors required to build that map have traditionally been either expensive and bulky or cheap and inaccurate. On November 4, a solution was discovered-in a videogame. That's the day Microsoft released the Kinect for Xbox 360, a $150 add-on that allows players to direct the action in a game simply by moving their bodies. Most of the world focused on the controller-free interface, but roboticists saw something else entirely: an affordable, lightweight camera that could capture 3-D images in real time. Within weeks of the device's release, YouTube was filled with videos of Kinect-enabled robots. A group from UC Berkeley strapped a Kinect to a quadrotor-a small helicopter with four propellers-enabling it to fly autonomously around a room. A couple of students at the University of Bundeswehr Munich attached a Kinect to a robotic car and sent it through an obstacle course.

Records 781 to 795 of 803

First | Previous | Next | Last

Featured Product

OCTOPUZ Robot Programming Software

OCTOPUZ Robot Programming Software

Program and simulate ALL your robots with OCTOPUZ offline software. OCTOPUZ specializes in path sensitive robotic applications such as welding, fabrication, edge following (waterjet, deburring, laser cutting), material removal (2D & 3D machining), and pick & place. Easy to learn, it directly supports paths from your favorite CAM system, has a library of over 15 different types of robot brands, can cut path generation by over 50% and is fully customizable to your unique needs. Program and simulate multiple robots simultaneously in any configuration! Responsive technical assistance from OCTOPUZ before, during and after sale via training, support and cell development make OCTOPUZ the software of choice.